Computing Cohomology Rings in Cubical Agda

Thomas Lamiaux, Axel Ljungström, Anders Mörtberg CPP 2023

1. Cohomology and Cohomology Rings ?

Klein Bottle vs Mickey Mouse

Question :

- How to prove that two topological spaces are not isomorphic?

Klein Bottle \mathbb{K}^{2}

"Mickey Mouse space"

$$
\mathbb{S}^{2} \bigvee \mathbb{S}^{1} \bigvee \mathbb{S}^{1}
$$

Cohomology Groups

Question :

- How to prove that two topological spaces are not isomorphic?

The idea behind cohomology groups

Cohomology Groups

Question :

- How to prove that two topological spaces are not isomorphic ?

The idea behind cohomology groups

- To each topological space X, associate a sequence of abelian group $\left(H^{i}(X)\right)_{i: \mathbb{N}}$, named the cohomology groups, such that:

$$
\exists i \in \mathbb{N}, H^{i}(X) \not \not 二 H^{i}(Y) \Longrightarrow X \neq Y
$$

Cohomology Groups

Question :

- How to prove that two topological spaces are not isomorphic?

The idea behind cohomology groups

- To each topological space X, associate a sequence of abelian group $\left(H^{i}(X)\right)_{i: \mathbb{N}}$, named the cohomology groups, such that:

$$
\exists i \in \mathbb{N}, H^{i}(X) \not \approx H^{i}(Y) \Longrightarrow X \not \approx Y
$$

- The invariants are supposed to be "easy" to compute, and "nice" groups : $\mathbb{Z}, \mathbb{Z} \times \mathbb{Z}, \mathbb{Z} / 2 \mathbb{Z}$

Cohomology Groups

Question :

- How to prove that two topological spaces are not isomorphic?

The idea behind cohomology groups

- To each topological space X, associate a sequence of abelian group $\left(H^{i}(X)\right)_{i: \mathbb{N}}$, named the cohomology groups, such that:

$$
\exists i \in \mathbb{N}, H^{i}(X) \not \approx H^{i}(Y) \Longrightarrow X \nsubseteq Y
$$

- The invariants are supposed to be "easy" to compute, and "nice" groups : $\mathbb{Z}, \mathbb{Z} \times \mathbb{Z}, \mathbb{Z} / 2 \mathbb{Z}$
- We are working in synthetic mathematics, in HoTT where cohomology groups have a remarkably short definition :

$$
H^{i}(X):=\|X \longrightarrow\| \mathbb{S}^{i}\left\|_{i}\right\|_{0}
$$

Cohomology Groups

Cohomology Groups

- To each topological space X, associate a sequence of abelian group $\left(H^{i}(X)\right)_{i: \mathbb{N}}$, named the cohomology groups, such that:

$$
\exists i \in \mathbb{N}, H^{i}(X) \neq H^{i}(Y) \Longrightarrow X \neq Y
$$

Cohomology Groups

Cohomology Groups

- To each topological space X, associate a sequence of abelian group $\left(H^{i}(X)\right)_{i: \mathbb{N}}$, named the cohomology groups, such that:

$$
\exists i \in \mathbb{N}, H^{i}(X) \neq H^{i}(Y) \Longrightarrow X \neq Y
$$

X	$H^{0}(X)$	$H^{1}(X)$	$H^{2}(X)$	$H^{3}(X)$	$H^{4}(X)$	Else
\mathbb{K}^{2}	\mathbb{Z}	\mathbb{Z}	$\mathbb{Z} / 2 \mathbb{Z}$	1	1	1
\mathbb{S}^{1}	\mathbb{Z}	\mathbb{Z}	1	1	1	1
$\mathbb{R} P^{2}$	\mathbb{Z}	1	$\mathbb{Z} / 2 \mathbb{Z}$	1	1	1
$\mathbb{C} P^{2}$	\mathbb{Z}	1	\mathbb{Z}	1	\mathbb{Z}	1
$\mathbb{S}^{2} \bigvee \mathbb{S}^{1} \bigvee \mathbb{S}^{1}$	\mathbb{Z}	$\mathbb{Z} \times \mathbb{Z}$	\mathbb{Z}	1	1	1

Cohomology Groups

Cohomology Groups

- To each topological space X, associate a sequence of abelian group $\left(H^{i}(X)\right)_{i: \mathbb{N}}$, named the cohomology groups, such that:

$$
\exists i \in \mathbb{N}, H^{i}(X) \neq H^{i}(Y) \Longrightarrow X \neq Y
$$

X	$H^{0}(X)$	$H^{1}(X)$	$H^{2}(X)$	$H^{3}(X)$	$H^{4}(X)$	Else
\mathbb{K}^{2}	\mathbb{Z}	\mathbb{Z}	$\mathbb{Z} / 2 \mathbb{Z}$	1	1	1
\mathbb{S}^{1}	\mathbb{Z}	\mathbb{Z}	1	1	1	1
$\mathbb{R} P^{2}$	\mathbb{Z}	1	$\mathbb{Z} / 2 \mathbb{Z}$	1	1	1
$\mathbb{C} P^{2}$	\mathbb{Z}	1	\mathbb{Z}	1	\mathbb{Z}	1
$\mathbb{S}^{2} \bigvee \mathbb{S}^{1} \bigvee \mathbb{S}^{1}$	\mathbb{Z}	$\mathbb{Z} \times \mathbb{Z}$	\mathbb{Z}	1	1	1

Cohomology Groups

Cohomology Groups

- To each topological space X, associate a sequence of abelian group $\left(H^{i}(X)\right)_{i: \mathbb{N}}$, named the cohomology groups, such that:

$$
\exists i \in \mathbb{N}, H^{i}(X) \neq H^{i}(Y) \Longrightarrow X \neq Y
$$

X	$H^{0}(X)$	$H^{1}(X)$	$H^{2}(X)$	$H^{3}(X)$	$H^{4}(X)$	Else
\mathbb{K}^{2}	\mathbb{Z}	\mathbb{Z}	$\mathbb{Z} / 2 \mathbb{Z}$	1	1	1
\mathbb{S}^{1}	\mathbb{Z}	\mathbb{Z}	1	1	1	1
$\mathbb{R} P^{2}$	\mathbb{Z}	1	$\mathbb{Z} / 2 \mathbb{Z}$	1	1	1
$\mathbb{C} P^{2}$	\mathbb{Z}	1	\mathbb{Z}	1	\mathbb{Z}	1
$\mathbb{S}^{2} \bigvee \mathbb{S}^{1} \bigvee \mathbb{S}^{1}$	\mathbb{Z}	$\mathbb{Z} \times \mathbb{Z}$	\mathbb{Z}	1	1	1

Cohomology Groups

Cohomology Groups

- To each topological space X, associate a sequence of abelian group $\left(H^{i}(X)\right)_{i: \mathbb{N}}$, named the cohomology groups, such that:

$$
\exists i \in \mathbb{N}, H^{i}(X) \neq H^{i}(Y) \Longrightarrow X \neq Y
$$

X	$H^{0}(X)$	$H^{1}(X)$	$H^{2}(X)$	$H^{3}(X)$	$H^{4}(X)$	Else
\mathbb{K}^{2}	\mathbb{Z}	\mathbb{Z}	$\mathbb{Z} / 2 \mathbb{Z}$	1	1	1
\mathbb{S}^{1}	\mathbb{Z}	\mathbb{Z}	1	1	1	1
$\mathbb{R} P^{2}$	\mathbb{Z}	1	$\mathbb{Z} / 2 \mathbb{Z}$	1	1	1
$\mathbb{C} P^{2}$	\mathbb{Z}	1	\mathbb{Z}	1	\mathbb{Z}	1
$\mathbb{S}^{2} \bigvee \mathbb{S}^{1} \bigvee \mathbb{S}^{1}$	\mathbb{Z}	$\mathbb{Z} \times \mathbb{Z}$	\mathbb{Z}	1	1	1

Cohomology Groups

Cohomology Groups

- To each topological space X, associate a sequence of abelian group $\left(H^{i}(X)\right)_{i: \mathbb{N}}$, named the cohomology groups, such that:

$$
\exists i \in \mathbb{N}, H^{i}(X) \neq H^{i}(Y) \Longrightarrow X \neq Y
$$

X	$H^{0}(X)$	$H^{1}(X)$	$H^{2}(X)$	$H^{3}(X)$	$H^{4}(X)$	Else
\mathbb{K}^{2}	\mathbb{Z}	\mathbb{Z}	$\mathbb{Z} / 2 \mathbb{Z}$	1	1	1
\mathbb{S}^{1}	\mathbb{Z}	\mathbb{Z}	1	1	1	1
$\mathbb{R} P^{2}$	\mathbb{Z}	1	$\mathbb{Z} / 2 \mathbb{Z}$	1	1	1
$\mathbb{C} P^{2}$	\mathbb{Z}	1	\mathbb{Z}	1	\mathbb{Z}	1
$\mathbb{S}^{2} \bigvee \mathbb{S}^{1} \bigvee \mathbb{S}^{1}$	\mathbb{Z}	$\mathbb{Z} \times \mathbb{Z}$	\mathbb{Z}	1	1	1

Cohomology groups are not enough !

Cohomology groups are just invariant

- Some topological spaces are not isomorphic but they have the same cohomology groups

X	$H^{0}(X)$	$H^{1}(X)$	$H^{2}(X)$	$H^{3}(X)$	$H^{4}(X)$	Else
$\mathbb{C} P^{2}$	\mathbb{Z}	1	\mathbb{Z}	1	\mathbb{Z}	1
$\mathbb{S}^{4} \vee \mathbb{S}^{2}$	\mathbb{Z}	1	\mathbb{Z}	1	\mathbb{Z}	1

The Cohomology Ring

The cup product and the comology ring

- There is a graded operation on the groups, the cup product

$$
\smile: H^{i}(X) \longrightarrow H^{j}(X) \longrightarrow H^{i+j}(X)
$$

The Cohomology Ring

The cup product and the comology ring

- There is a graded operation on the groups, the cup product

$$
\smile: H^{i}(X) \longrightarrow H^{j}(X) \longrightarrow H^{i+j}(X)
$$

- Which enables to turn $H^{*}(X):=\bigoplus_{i: \mathbb{N}} H^{i}(X)$ in a ring named the cohomology ring

The Cohomology Ring

The cup product and the comology ring

- There is a graded operation on the groups, the cup product

$$
\smile: H^{i}(X) \longrightarrow H^{j}(X) \longrightarrow H^{i+j}(X)
$$

- Which enables to turn $H^{*}(X):=\bigoplus_{i: \mathbb{N}} H^{i}(X)$ in a ring named the cohomology ring
- This cohomology ring is one more invariant :

$$
H^{*}(X) \not \approx H^{*}(Y) \Longrightarrow X \neq Y
$$

X	$H^{0}(X)$	$H^{1}(X)$	$H^{2}(X)$	Else	$H^{*}(X)$
$\mathbb{C} P^{2}$	\mathbb{Z}	1	\mathbb{Z}	1	$\mathbb{Z}[X] /\left\langle X^{3}\right\rangle$
$\mathbb{S}^{4} \bigvee \mathbb{S}^{2}$	\mathbb{Z}	1	\mathbb{Z}	1	$\mathbb{Z}[X, Y] /\left\langle X^{2}, X Y, Y^{2}\right\rangle$

What do we need to solve ?

Objective ?

Prove ring isomorphisms of the form :

$$
H^{*}\left(\mathbb{K}^{2}\right):=\bigoplus_{i: \mathbb{N}} H^{i}\left(\mathbb{K}^{2}\right) \cong \mathbb{Z}[X, Y] /\left\langle X^{2}, X Y, 2 Y, Y^{2}\right\rangle
$$

What do we need to solve ?

Objective?

Prove ring isomorphisms of the form :

$$
H^{*}\left(\mathbb{K}^{2}\right):=\bigoplus_{i: \mathbb{N}} H^{i}\left(\mathbb{K}^{2}\right) \cong \mathbb{Z}[X, Y] /\left\langle X^{2}, X Y, 2 Y, Y^{2}\right\rangle
$$

Issues ?

1. Build a easy to work with \bigoplus to define graded rings

What do we need to solve ?

Objective ?

Prove ring isomorphisms of the form :

$$
H^{*}\left(\mathbb{K}^{2}\right):=\bigoplus_{i: \mathbb{N}} H^{i}\left(\mathbb{K}^{2}\right) \cong \mathbb{Z}[X, Y] /\left\langle X^{2}, X Y, 2 Y, Y^{2}\right\rangle
$$

Issues ?

1. Build a easy to work with \bigoplus to define graded rings
2. Find a practical notion of multivariate polynomials

What do we need to solve ?

Objective ?

Prove ring isomorphisms of the form :

$$
H^{*}\left(\mathbb{K}^{2}\right):=\bigoplus_{i: \mathbb{N}} H^{i}\left(\mathbb{K}^{2}\right) \cong \mathbb{Z}[X, Y] /\left\langle X^{2}, X Y, 2 Y, Y^{2}\right\rangle
$$

Issues ?

1. Build a easy to work with \bigoplus to define graded rings
2. Find a practical notion of multivariate polynomials
3. Prove the different ring isomorphisms

What do we need to solve ?

Objective ?

Prove ring isomorphisms of the form :

$$
H^{*}\left(\mathbb{K}^{2}\right):=\bigoplus_{i: \mathbb{N}} H^{i}\left(\mathbb{K}^{2}\right) \cong \mathbb{Z}[X, Y] /\left\langle X^{2}, X Y, 2 Y, Y^{2}\right\rangle
$$

Issues ?

1. Build a easy to work with \bigoplus to define graded rings
2. Find a practical notion of multivariate polynomials
3. Prove the different ring isomorphisms

Constraints ?

- We are working in cubical agda \Longrightarrow no tactics !

What do we need to solve ?

Objective ?

Prove ring isomorphisms of the form :

$$
H^{*}\left(\mathbb{K}^{2}\right):=\bigoplus_{i: \mathbb{N}} H^{i}\left(\mathbb{K}^{2}\right) \cong \mathbb{Z}[X, Y] /\left\langle X^{2}, X Y, 2 Y, Y^{2}\right\rangle
$$

Issues ?

1. Build a easy to work with \bigoplus to define graded rings
2. Find a practical notion of multivariate polynomials
3. Prove the different ring isomorphisms

Constraints ?

- We are working in cubical agda \Longrightarrow no tactics !
- We want to be constructive

2. Building the direct sum and graded rings

2. Building the direct sum and graded rings

2.1 Adapting the classical direct sum

Adapting the classical direct sum

The classical direct sum

$$
\bigoplus_{i: I} G_{i}:=\left\{\left(g_{i}\right)_{i \in I} \mid \exists \text { finite } J \subset I, \forall n \notin J, \quad g_{n}=0 \in G_{n}\right\}
$$

Adapting the classical direct sum

The classical direct sum

$$
\bigoplus_{i: I} G_{i}:=\left\{\left(g_{i}\right)_{i \in I} \mid \exists \text { finite } J \subset I, \forall n \notin J, \quad g_{n}=0 \in G_{n}\right\}
$$

A general definition ?

$$
\sum_{f: \prod_{i: I}: G_{i}}\left\|\sum_{\substack{J: \text { subset }(I) \\ J \text { finite }}} \prod_{\substack{i: I \\ i \notin J}} f(i) \equiv 0_{i}\right\|
$$

Adapting the classical direct sum

The classical direct sum

$$
\bigoplus_{i: I} G_{i}:=\left\{\left(g_{i}\right)_{i \in I} \mid \exists \text { finite } J \subset I, \forall n \notin J, \quad g_{n}=0 \in G_{n}\right\}
$$

A general definition ?

$$
\sum_{f: \prod_{i: I}: G_{i}}\left\|\sum_{\substack{J: \text { subset }(I) \\ J \text { finite }}} \prod_{\substack{i: I \\ i \notin J}} f(i) \equiv 0_{i}\right\|
$$

A solution when / is \mathbb{N}

$$
\bigoplus_{n: \mathbb{N}}^{\text {Fun }} G_{n}:=\sum_{f: \prod_{n: \mathbb{N}}: G_{n}}\left\|\sum_{\substack{k: \mathbb{N}}} \prod_{\substack{k: \mathbb{N} \\ k<i}} f(i) \equiv 0_{i}\right\|
$$

Building Graded Rings ?

Abelian group structure

Given $f, g: \oplus_{n: \mathbb{N}}^{\mathrm{Fun}} G_{n}$, an abelian group structure can be defined pointwise:

$$
(f+g)(n)=f(n)+{ }_{n} g(n)
$$

Building Graded Rings ?

Abelian group structure

Given $f, g: \oplus_{n: \mathbb{N}}^{\mathrm{Fun}} G_{n}$, an abelian group structure can be defined pointwise:

$$
(f+g)(n)=f(n)+{ }_{n} g(n)
$$

A product?
Given $\star: G_{i} \rightarrow G_{j} \rightarrow G_{i+j}$ over $(\mathbb{N}, 0,+)$, we would like to define :

$$
(f \times g)(n)=\sum_{i=0}^{n} f(i) \star g(n-i)
$$

Building Graded Rings ?

Abelian group structure

Given $f, g: \oplus_{n: \mathbb{N}}^{\mathrm{Fun}} G_{n}$, an abelian group structure can be defined pointwise:

$$
(f+g)(n)=f(n)+_{n} g(n)
$$

A product ?
Given $\star: G_{i} \rightarrow G_{j} \rightarrow G_{i+j}$ over $(\mathbb{N}, 0,+)$, we would like to define :

$$
(f \times g)(n)=\sum_{i=0}^{n} f(i) \star g(n-i)
$$

but it doesn't type check because $G_{i+(n-i)} \neq G_{n}$ definitionally

Building Graded Rings ?

Abelian group structure

Given $f, g: \oplus_{n: \mathbb{N}}^{\mathrm{Fun}} G_{n}$, an abelian group structure can be defined pointwise:

$$
(f+g)(n)=f(n)+_{n} g(n)
$$

A product ?

Given $\star: G_{i} \rightarrow G_{j} \rightarrow G_{i+j}$ over $(\mathbb{N}, 0,+)$, we would like to define :

$$
(f \times g)(n)=\sum_{i=0}^{n} f(i) \star g(n-i)
$$

but it doesn't type check because $G_{i+(n-i)} \neq G_{n}$ definitionally

Transports are needed

$$
(f \times g)(n)=\sum_{i=0}^{n} \uparrow_{i}^{n}(f(i) \star g(n-i))
$$

Proving the properties ?

Proving associativity is however complicated, it unfolds to proving :

$$
\begin{aligned}
(f \times(g \times h))(n) & =\sum_{i=0}^{n} \uparrow_{i}^{n}(f(i) \star(g \times h)(n-i)) \\
& =\sum_{i=0}^{n} \uparrow_{i}^{n}\left(f(i) \star\left(\sum_{j=0}^{n-i} \uparrow_{j}^{n-i}(g(j) \star h(n-i-j))\right)\right) \\
& \equiv \ldots \\
& =\sum_{i=0}^{n} \uparrow_{i}^{n}\left(\left(\sum_{j=0}^{i} \uparrow_{j}^{i}(f(j) \star g(i-j))\right) \star h(n-i)\right) \\
& =\sum_{i=0}^{n} \uparrow_{i}^{n}((f \times g)(i) \star h(n-i)) \\
& =((f \times g) \times h)(n)
\end{aligned}
$$

2. Building the direct sum and graded rings

2.2 A quotient inductive type definition

A quotient inductive type definition

data \oplus HIT (I : Type) ($G: I \rightarrow$ AbGroup) : Type where
-- Point constructors
$0 \oplus \quad: \oplus$ HIT I G
base $\quad:(n: I) \rightarrow\langle G n\rangle \rightarrow \oplus$ HIT I G
${ }_{+}+{ }_{-} \quad: \oplus$ HIT I $G \rightarrow \oplus$ HIT I $G \rightarrow \oplus$ HIT I G
-- Abelian group laws
$+\oplus$ Assoc : $\forall x y z \rightarrow x+\oplus(y+\oplus z) \equiv(x+\oplus y)+\oplus z$
$+\oplus$ Rid $: \forall x \rightarrow x+\oplus 0 \oplus \equiv x$
$+\oplus$ Comm : $\forall x y \rightarrow x+\oplus y \equiv y+\oplus x$
-- Morphism laws
base0 $\oplus: \forall n \rightarrow$ base $n 0\langle G n\rangle \equiv 0 \oplus$
base $+\oplus: \forall n x y \rightarrow$ base $n x+\oplus$ base $n y \equiv$ base $n(x+\langle G n\rangle y)$
-- Set truncation
trunc : isSet $(\oplus$ HIT I G)

Defining a graded ring

Defining the product

Given a monoid $(I, e,+)$ and $\star: G_{i} \rightarrow G_{j} \rightarrow G_{i+j}$, we can define a product _ ${ }^{\times}$_ by double recursion :

Defining a graded ring

Defining the product

Given a monoid $(I, e,+)$ and $\star: G_{i} \rightarrow G_{j} \rightarrow G_{i+j}$, we can define a product ${ }^{\times}$_ by double recursion :

- $0 \oplus,^{+}+\oplus_{\text {_ }}$ are trivial cases to define

Defining a graded ring

Defining the product

Given a monoid $(I, e,+)$ and $\star: G_{i} \rightarrow G_{j} \rightarrow G_{i+j}$, we can define a product ${ }^{\times}$_ by double recursion :

- $0 \oplus,^{+}+{ }_{+}$are trivial cases to define
- To base $n x$, base $m y$, we associate base $(n+m)(x \star y)$

Defining a graded ring

Defining the product

Given a monoid $(I, e,+)$ and $\star: G_{i} \rightarrow G_{j} \rightarrow G_{i+j}$, we can define a product ${ }_{-}{ }^{-}$by double recursion :

- $0 \oplus,^{+}+{ }_{+}$are trivial cases to define
- To base $n x$, base $m y$, we associate base $(n+m)(x \star y)$
- The different higher equations are easy to verify

Defining a graded ring

Defining the product

Given a monoid $(I, e,+)$ and $\star: G_{i} \rightarrow G_{j} \rightarrow G_{i+j}$, we can define a product ${ }_{-}{ }^{-}$by double recursion :

- $0 \oplus,^{+}+\oplus_{\text {_ }}$ are trivial cases to define
- To base $n x$, base $m y$, we associate base $(n+m)(x \star y)$
- The different higher equations are easy to verify

Proving associativity

We can again reason by triple induction :

- $0 \oplus,^{+}+{ }^{+}$cases are automatic

Defining a graded ring

Defining the product

Given a monoid $(I, e,+)$ and $\star: G_{i} \rightarrow G_{j} \rightarrow G_{i+j}$, we can define a product ${ }_{-}{ }^{-}$by double recursion :

- $0 \oplus,^{+}+\oplus_{-}$are trivial cases to define
- To base $n x$, base $m y$, we associate base $(n+m)(x \star y)$
- The different higher equations are easy to verify

Proving associativity

We can again reason by triple induction :

- $0 \oplus,_{2}+\oplus_{-}$cases are automatic
- For the base case, it unfolds to proving :
base $(n+(m+k))(x \star(y \star z)) \equiv$ base $((n+m)+k)((x \star y) \star z)$

Defining a graded ring

Defining the product

Given a monoid $(I, e,+)$ and $\star: G_{i} \rightarrow G_{j} \rightarrow G_{i+j}$, we can define a product ${ }_{-}{ }^{-}$by double recursion :

- $0 \oplus,^{+}+\oplus_{-}$are trivial cases to define
- To base $n x$, base $m y$, we associate base $(n+m)(x \star y)$
- The different higher equations are easy to verify

Proving associativity

We can again reason by triple induction :

- $0 \oplus, \ldots+\oplus$ _ cases are automatic
- For the base case, it unfolds to proving :

$$
\text { base }(n+(m+k))(x \star(y \star z)) \equiv \text { base }((n+m)+k)((x \star y) \star z)
$$

- All equations are trivial

The HIT polynomials

Multivariate polynomials

- We can define $R[X]:=\bigoplus_{i: \mathbb{N}}^{\mathrm{HIT}} R$

The HIT polynomials

Multivariate polynomials

- We can define $R[X]:=\bigoplus_{i: \mathbb{N}}^{\text {HIT }} R$
- More generally, we can just define $R\left[X_{1}, \ldots, X_{n}\right]:=\bigoplus_{i: \mathbb{N}^{n}}^{\mathrm{HIT}} R$

The HIT polynomials

Multivariate polynomials

- We can define $R[X]:=\bigoplus_{i: \mathbb{N}}^{\text {HIT }} R$
- More generally, we can just define $R\left[X_{1}, \ldots, X_{n}\right]:=\bigoplus_{i: \mathbb{N}^{n}}^{\mathrm{HIT}} R$

Pros for our purpose

- The cohomology ring $H^{*}(X)$ can be defined in the same way

The HIT polynomials

Multivariate polynomials

- We can define $R[X]:=\bigoplus_{i: \mathbb{N}}^{\text {HIT }} R$
- More generally, we can just define $R\left[X_{1}, \ldots, X_{n}\right]:=\bigoplus_{i: \mathbb{N}}^{\mathrm{HIT}} R$

Pros for our purpose

- The cohomology ring $H^{*}(X)$ can be defined in the same way
- This enables a direct definition of multivariate polynomials

The HIT polynomials

Multivariate polynomials

- We can define $R[X]:=\bigoplus_{i: \mathbb{N}}^{\mathrm{HIT}} R$
- More generally, we can just define $R\left[X_{1}, \ldots, X_{n}\right]:=\bigoplus_{i: \mathbb{N}}^{\mathrm{HIT}} R$

Pros for our purpose

- The cohomology ring $H^{*}(X)$ can be defined in the same way
- This enables a direct definition of multivariate polynomials
- The elements and the product are intuitive and easy to work with

The HIT polynomials

Multivariate polynomials

- We can define $R[X]:=\bigoplus_{i: \mathbb{N}}^{\mathrm{HIT}} R$
- More generally, we can just define $R\left[X_{1}, \ldots, X_{n}\right]:=\bigoplus_{i: \mathbb{N}}^{\mathrm{HIT}} R$

Pros for our purpose

- The cohomology ring $H^{*}(X)$ can be defined in the same way
- This enables a direct definition of multivariate polynomials
- The elements and the product are intuitive and easy to work with
\triangleright Elements are generated by $0, a X^{n},+$

The HIT polynomials

Multivariate polynomials

- We can define $R[X]:=\bigoplus_{i: \mathbb{N}}^{\mathrm{HIT}} R$
- More generally, we can just define $R\left[X_{1}, \ldots, X_{n}\right]:=\bigoplus_{i: \mathbb{N}^{n}}^{\mathrm{HIT}} R$

Pros for our purpose

- The cohomology ring $H^{*}(X)$ can be defined in the same way
- This enables a direct definition of multivariate polynomials
- The elements and the product are intuitive and easy to work with
\triangleright Elements are generated by $0, a X^{n},+$
\triangleright The product is basically generated by $a X^{n} \times b X^{m}=a b X^{n+m}$

3. Proving the isomorphisms ?

A General Method

Objective ?

Prove ring isomorphisms of the form :

$$
H^{*}\left(\mathbb{K}^{2}\right):=\bigoplus_{i: \mathbb{N}} H^{i}\left(\mathbb{K}^{2}\right) \cong \mathbb{Z}[X, Y] /\left\langle X^{2}, X Y, 2 Y, Y^{2}\right\rangle
$$

A General Method

Objective ?

Prove ring isomorphisms of the form :

$$
H^{*}\left(\mathbb{K}^{2}\right):=\bigoplus_{i: \mathbb{N}} H^{i}\left(\mathbb{K}^{2}\right) \cong \mathbb{Z}[X, Y] /\left\langle X^{2}, X Y, 2 Y, Y^{2}\right\rangle
$$

A method

A General Method

Objective?

Prove ring isomorphisms of the form :

$$
H^{*}\left(\mathbb{K}^{2}\right):=\bigoplus_{i: \mathbb{N}} H^{i}\left(\mathbb{K}^{2}\right) \cong \mathbb{Z}[X, Y] /\left\langle X^{2}, X Y, 2 Y, Y^{2}\right\rangle
$$

A method

1. We build a function $\psi: \mathbb{Z}[X, Y] \longrightarrow H^{*}\left(\mathbb{K}^{2}\right)$ by recursion

A General Method

Objective?

Prove ring isomorphisms of the form :

$$
H^{*}\left(\mathbb{K}^{2}\right):=\bigoplus_{i: \mathbb{N}} H^{i}\left(\mathbb{K}^{2}\right) \cong \mathbb{Z}[X, Y] /\left\langle X^{2}, X Y, 2 Y, Y^{2}\right\rangle
$$

A method

1. We build a function $\psi: \mathbb{Z}[X, Y] \longrightarrow H^{*}\left(\mathbb{K}^{2}\right)$ by recursion
2. Prove that ψ is a ring morphism by induction

A General Method

Objective?

Prove ring isomorphisms of the form :

$$
H^{*}\left(\mathbb{K}^{2}\right):=\bigoplus_{i: \mathbb{N}} H^{i}\left(\mathbb{K}^{2}\right) \cong \mathbb{Z}[X, Y] /\left\langle X^{2}, X Y, 2 Y, Y^{2}\right\rangle
$$

A method

1. We build a function $\psi: \mathbb{Z}[X, Y] \longrightarrow H^{*}\left(\mathbb{K}^{2}\right)$ by recursion
2. Prove that ψ is a ring morphism by induction
3. Get a ring morphism $\mathbb{Z}[X, Y] /\left\langle X^{2}, X Y, 2 Y, Y^{2}\right\rangle \longrightarrow H^{*}\left(\mathbb{K}^{2}\right)$ by proving it cancels on $X^{2}, X Y, 2 Y, Y^{2}$

A General Method

Objective?

Prove ring isomorphisms of the form :

$$
H^{*}\left(\mathbb{K}^{2}\right):=\bigoplus_{i: \mathbb{N}} H^{i}\left(\mathbb{K}^{2}\right) \cong \mathbb{Z}[X, Y] /\left\langle X^{2}, X Y, 2 Y, Y^{2}\right\rangle
$$

A method

1. We build a function $\psi: \mathbb{Z}[X, Y] \longrightarrow H^{*}\left(\mathbb{K}^{2}\right)$ by recursion
2. Prove that ψ is a ring morphism by induction
3. Get a ring morphism $\mathbb{Z}[X, Y] /\left\langle X^{2}, X Y, 2 Y, Y^{2}\right\rangle \longrightarrow H^{*}\left(\mathbb{K}^{2}\right)$ by proving it cancels on $X^{2}, X Y, 2 Y, Y^{2}$
4. Build an inverse $H^{*}\left(\mathbb{K}^{2}\right) \longrightarrow \mathbb{Z}[X, Y] /\left\langle X^{2}, X Y, 2 Y, Y^{2}\right\rangle$ by recursion

The benefit of the data structure

The method in practice
Thanks to the data structure :

1. Building the ψ functions is very direct

The benefit of the data structure

The method in practice
Thanks to the data structure :

1. Building the ψ functions is very direct
2. Proving ψ is a ring morphism :

The benefit of the data structure

The method in practice

Thanks to the data structure :

1. Building the ψ functions is very direct
2. Proving ψ is a ring morphism :
\triangleright The only non trivial case is proving ψ respects the product

The benefit of the data structure

The method in practice

Thanks to the data structure :

1. Building the ψ functions is very direct
2. Proving ψ is a ring morphism :
\triangleright The only non trivial case is proving ψ respects the product
\triangleright This unfolds very directly to proving :

$$
\psi\left(X^{n+m}\right)=\psi\left(X^{n}\right) \smile \psi\left(X^{m}\right)
$$

The benefit of the data structure

The method in practice

Thanks to the data structure :

1. Building the ψ functions is very direct
2. Proving ψ is a ring morphism :
\triangleright The only non trivial case is proving ψ respects the product
\triangleright This unfolds very directly to proving :

$$
\psi\left(X^{n+m}\right)=\psi\left(X^{n}\right) \smile \psi\left(X^{m}\right)
$$

3. ψ cancels on $X^{2}, X Y, 2 Y, Y^{2}$ by definition

The benefit of the data structure

The method in practice

Thanks to the data structure :

1. Building the ψ functions is very direct
2. Proving ψ is a ring morphism :
\triangleright The only non trivial case is proving ψ respects the product
\triangleright This unfolds very directly to proving :

$$
\psi\left(X^{n+m}\right)=\psi\left(X^{n}\right) \smile \psi\left(X^{m}\right)
$$

3. ψ cancels on $X^{2}, X Y, 2 Y, Y^{2}$ by definition
4. Building an inverse function is equally direct

A word on synthetic mathematics

Proving it is a ring morphism

- So we just need to prove :

$$
\psi\left(X^{n+m}\right)=\psi\left(X^{n}\right) \smile \psi\left(X^{m}\right)
$$

A word on synthetic mathematics

Proving it is a ring morphism

- So we just need to prove :

$$
\psi\left(X^{n+m}\right)=\psi\left(X^{n}\right) \smile \psi\left(X^{m}\right)
$$

The benefit of synthetic mathematics in HoTT

- Spaces, functions... can be defined by induction

A word on synthetic mathematics

Proving it is a ring morphism

- So we just need to prove :

$$
\psi\left(X^{n+m}\right)=\psi\left(X^{n}\right) \smile \psi\left(X^{m}\right)
$$

The benefit of synthetic mathematics in HoTT

- Spaces, functions... can be defined by induction - It gives a short and "more graspable" definition of cohomology

A word on synthetic mathematics

Proving it is a ring morphism

- So we just need to prove :

$$
\psi\left(X^{n+m}\right)=\psi\left(X^{n}\right) \smile \psi\left(X^{m}\right)
$$

The benefit of synthetic mathematics in HoTT

- Spaces, functions... can be defined by induction
\triangleright It gives a short and "more graspable" definition of cohomology
\triangleright Possible to directly define the cup product \smile by recursion

A word on synthetic mathematics

Proving it is a ring morphism

- So we just need to prove :

$$
\psi\left(X^{n+m}\right)=\psi\left(X^{n}\right) \smile \psi\left(X^{m}\right)
$$

The benefit of synthetic mathematics in HoTT

- Spaces, functions... can be defined by induction
\triangleright It gives a short and "more graspable" definition of cohomology
\triangleright Possible to directly define the cup product \smile by recursion
- It is possible to directly manipulate paths

A word on synthetic mathematics

Proving it is a ring morphism

- So we just need to prove :

$$
\psi\left(X^{n+m}\right)=\psi\left(X^{n}\right) \smile \psi\left(X^{m}\right)
$$

The benefit of synthetic mathematics in HoTT

- Spaces, functions... can be defined by induction
\triangleright It gives a short and "more graspable" definition of cohomology
\triangleright Possible to directly define the cup product \smile by recursion
- It is possible to directly manipulate paths
\triangleright Simpler and short computation of many cohomology groups

A word on synthetic mathematics

Proving it is a ring morphism

- So we just need to prove :

$$
\psi\left(X^{n+m}\right)=\psi\left(X^{n}\right) \smile \psi\left(X^{m}\right)
$$

The benefit of synthetic mathematics in HoTT

- Spaces, functions... can be defined by induction
\triangleright It gives a short and "more graspable" definition of cohomology
\triangleright Possible to directly define the cup product \smile by recursion
- It is possible to directly manipulate paths
\triangleright Simpler and short computation of many cohomology groups
\triangleright Possible to directly prove the properties of the cup product

A word on synthetic mathematics

Proving it is a ring morphism

- So we just need to prove :

$$
\psi\left(X^{n+m}\right)=\psi\left(X^{n}\right) \smile \psi\left(X^{m}\right)
$$

The benefit of synthetic mathematics in HoTT

- Spaces, functions... can be defined by induction
\triangleright It gives a short and "more graspable" definition of cohomology
\triangleright Possible to directly define the cup product \smile by recursion
- It is possible to directly manipulate paths
\triangleright Simpler and short computation of many cohomology groups
\triangleright Possible to directly prove the properties of the cup product
\triangleright Possible to directly characterize the behavior of the cup product on spaces

Conclusion

Conclusion

Achievement in the talk

- Built $H^{*}(X)$ and a new definition of the multivariate polynomials

Conclusion

Achievement in the talk

- Built $H^{*}(X)$ and a new definition of the multivariate polynomials
- Then explained how to compute cohomology ring

Conclusion

Achievement in the talk

- Built $H^{*}(X)$ and a new definition of the multivariate polynomials
- Then explained how to compute cohomology ring
- Showed how data representation influence formalization

Conclusion

Achievement in the talk

- Built $H^{*}(X)$ and a new definition of the multivariate polynomials
- Then explained how to compute cohomology ring
- Showed how data representation influence formalization

More in the paper

- Details on direct sum, graded rings and polynomials

Conclusion

Achievement in the talk

- Built $H^{*}(X)$ and a new definition of the multivariate polynomials
- Then explained how to compute cohomology ring
- Showed how data representation influence formalization

More in the paper

- Details on direct sum, graded rings and polynomials
- A data refinement problem in mathematics

Conclusion

Achievement in the talk

- Built $H^{*}(X)$ and a new definition of the multivariate polynomials
- Then explained how to compute cohomology ring
- Showed how data representation influence formalization

More in the paper

- Details on direct sum, graded rings and polynomials
- A data refinement problem in mathematics
- Detailed computation of the \mathbb{Z} cohomology ring of : $\mathbb{S}^{n}, \mathbb{C} P^{2}, \mathbb{S}^{4} \bigvee \mathbb{S}^{2}, \mathbb{K}^{2}, \mathbb{R} P^{2} \bigvee \mathbb{S}^{1}$,

Conclusion

Achievement in the talk

- Built $H^{*}(X)$ and a new definition of the multivariate polynomials
- Then explained how to compute cohomology ring
- Showed how data representation influence formalization

More in the paper

- Details on direct sum, graded rings and polynomials
- A data refinement problem in mathematics
- Detailed computation of the \mathbb{Z} cohomology ring of : $\mathbb{S}^{n}, \mathbb{C} P^{2}, \mathbb{S}^{4} \bigvee \mathbb{S}^{2}, \mathbb{K}^{2}, \mathbb{R} P^{2} \bigvee \mathbb{S}^{1}$,
- Detailed computation of the $\mathbb{Z} / 2 \mathbb{Z}$ cohomology ring of : $\mathbb{K}^{2}, \mathbb{R} P^{2} \bigvee \mathbb{S}^{1}$,

