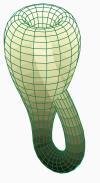
Computing Cohomology Rings in Cubical Agda

Thomas Lamiaux, Axel Ljungström, Anders Mörtberg CPP 2023 1. Cohomology and Cohomology Rings?

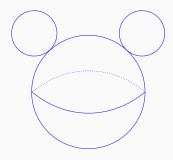
Klein Bottle vs Mickey Mouse

Question:

• How to prove that two topological spaces are not isomorphic ?



Klein Bottle \mathbb{K}^2



"Mickey Mouse space" $\mathbb{S}^2 \bigvee \mathbb{S}^1 \bigvee \mathbb{S}^1$

Question:

• How to prove that two topological spaces are not isomorphic ?

The idea behind cohomology groups

Question:

How to prove that two topological spaces are not isomorphic?

The idea behind cohomology groups

$$\exists i \in \mathbb{N}, H^i(X) \ncong H^i(Y) \implies X \ncong Y$$

Question:

How to prove that two topological spaces are not isomorphic?

The idea behind cohomology groups

• To each topological space X, associate a sequence of abelian group $(H^i(X))_{i:\mathbb{N}}$, named the cohomology groups, such that:

$$\exists i \in \mathbb{N}, H^i(X) \ncong H^i(Y) \implies X \ncong Y$$

• The invariants are supposed to be "easy" to compute, and "nice" groups : \mathbb{Z} , $\mathbb{Z} \times \mathbb{Z}$, $\mathbb{Z}/2\mathbb{Z}$

Question:

How to prove that two topological spaces are not isomorphic?

The idea behind cohomology groups

$$\exists i \in \mathbb{N}, H^i(X) \ncong H^i(Y) \implies X \ncong Y$$

- The invariants are supposed to be "easy" to compute, and "nice" groups : \mathbb{Z} , $\mathbb{Z} \times \mathbb{Z}$, $\mathbb{Z}/2\mathbb{Z}$
- We are working in synthetic mathematics, in HoTT where cohomology groups have a remarkably short definition:

$$H^{i}(X) := \parallel X \longrightarrow \parallel \mathbb{S}^{i} \parallel_{i} \parallel_{0}$$

Cohomology Groups

$$\exists i \in \mathbb{N}, H^i(X) \ncong H^i(Y) \implies X \ncong Y$$

Cohomology Groups

$$\exists i \in \mathbb{N}, H^i(X) \ncong H^i(Y) \implies X \ncong Y$$

X	$H^0(X)$	$H^1(X)$	$H^2(X)$	$H^3(X)$	$H^4(X)$	Else
\mathbb{K}^2	\mathbb{Z}	\mathbb{Z}	$\mathbb{Z}/2\mathbb{Z}$	1	1	1
\mathbb{S}^1	\mathbb{Z}	\mathbb{Z}	1	1	1	1
$\mathbb{R}P^2$	\mathbb{Z}	1	$\mathbb{Z}/2\mathbb{Z}$	1	1	1
$\mathbb{C}P^2$	\mathbb{Z}	1	\mathbb{Z}	1	\mathbb{Z}	1
$\mathbb{S}^2 \bigvee \mathbb{S}^1 \bigvee \mathbb{S}^1$	\mathbb{Z}	$\mathbb{Z} \times \mathbb{Z}$	\mathbb{Z}	1	1	1

Cohomology Groups

$$\exists i \in \mathbb{N}, H^i(X) \ncong H^i(Y) \implies X \ncong Y$$

X	$H^0(X)$	$H^1(X)$	$H^2(X)$	$H^3(X)$	$H^4(X)$	Else
\mathbb{K}^2	\mathbb{Z}	\mathbb{Z}	$\mathbb{Z}/2\mathbb{Z}$	1	1	1
\mathbb{S}^1	\mathbb{Z}	\mathbb{Z}	1	1	1	1
$\mathbb{R}P^2$	\mathbb{Z}	1	$\mathbb{Z}/2\mathbb{Z}$	1	1	1
$\mathbb{C}P^2$	\mathbb{Z}	1	\mathbb{Z}	1	\mathbb{Z}	1
$\mathbb{S}^2 \bigvee \mathbb{S}^1 \bigvee \mathbb{S}^1$	\mathbb{Z}	$\mathbb{Z} \times \mathbb{Z}$	\mathbb{Z}	1	1	1

Cohomology Groups

$$\exists i \in \mathbb{N}, H^i(X) \ncong H^i(Y) \implies X \ncong Y$$

X	$H^0(X)$	$H^1(X)$	$H^2(X)$	$H^3(X)$	$H^4(X)$	Else
\mathbb{K}^2	\mathbb{Z}	\mathbb{Z}	$\mathbb{Z}/2\mathbb{Z}$	1	1	1
\mathbb{S}^1	\mathbb{Z}	\mathbb{Z}	1	1	1	1
$\mathbb{R}P^2$	\mathbb{Z}	1	$\mathbb{Z}/2\mathbb{Z}$	1	1	1
$\mathbb{C}P^2$	\mathbb{Z}	1	\mathbb{Z}	1	\mathbb{Z}	1
$\mathbb{S}^2 \bigvee \mathbb{S}^1 \bigvee \mathbb{S}^1$	\mathbb{Z}	$\mathbb{Z} \times \mathbb{Z}$	\mathbb{Z}	1	1	1

Cohomology Groups

$$\exists i \in \mathbb{N}, H^i(X) \ncong H^i(Y) \implies X \ncong Y$$

X	$H^0(X)$	$H^1(X)$	$H^2(X)$	$H^3(X)$	$H^4(X)$	Else
\mathbb{K}^2	\mathbb{Z}	\mathbb{Z}	$\mathbb{Z}/2\mathbb{Z}$	1	1	1
\mathbb{S}^1	\mathbb{Z}	\mathbb{Z}	1	1	1	1
$\mathbb{R}P^2$	\mathbb{Z}	1	$\mathbb{Z}/2\mathbb{Z}$	1	1	1
$\mathbb{C}P^2$	\mathbb{Z}	1	\mathbb{Z}	1	\mathbb{Z}	1
$\mathbb{S}^2 \bigvee \mathbb{S}^1 \bigvee \mathbb{S}^1$	\mathbb{Z}	$\mathbb{Z} \times \mathbb{Z}$	\mathbb{Z}	1	1	1

Cohomology Groups

$$\exists i \in \mathbb{N}, H^i(X) \ncong H^i(Y) \implies X \ncong Y$$

X	$H^0(X)$	$H^1(X)$	$H^2(X)$	$H^3(X)$	$H^4(X)$	Else
\mathbb{K}^2	\mathbb{Z}	\mathbb{Z}	$\mathbb{Z}/2\mathbb{Z}$	1	1	1
\mathbb{S}^1	\mathbb{Z}	\mathbb{Z}	1	1	1	1
$\mathbb{R}P^2$	\mathbb{Z}	1	$\mathbb{Z}/2\mathbb{Z}$	1	1	1
$\mathbb{C}P^2$	\mathbb{Z}	1	\mathbb{Z}	1	\mathbb{Z}	1
$\mathbb{S}^2 \bigvee \mathbb{S}^1 \bigvee \mathbb{S}^1$	\mathbb{Z}	$\mathbb{Z} \times \mathbb{Z}$	\mathbb{Z}	1	1	1

Cohomology groups are not enough!

Cohomology groups are just invariant

 Some topological spaces are <u>not isomorphic</u> but they have the same cohomology groups

X	$H^0(X)$	$H^1(X)$	$H^2(X)$	$H^3(X)$	$H^4(X)$	Else
$\mathbb{C}P^2$	\mathbb{Z}	1	\mathbb{Z}	1	\mathbb{Z}	1
$\mathbb{S}^4 \vee \mathbb{S}^2$	\mathbb{Z}	1	\mathbb{Z}	1	\mathbb{Z}	1

The Cohomology Ring

The cup product and the comology ring

• There is a graded operation on the groups, the cup product

$$\smile: H^i(X) \longrightarrow H^j(X) \longrightarrow H^{i+j}(X)$$

The Cohomology Ring

The cup product and the comology ring

• There is a graded operation on the groups, the cup product

$$\smile: H^i(X) \longrightarrow H^j(X) \longrightarrow H^{i+j}(X)$$

• Which enables to turn $H^*(X) := \bigoplus_{i:\mathbb{N}} H^i(X)$ in a ring named the cohomology ring

The Cohomology Ring

The cup product and the comology ring

• There is a graded operation on the groups, the cup product

$$\smile: H^i(X) \longrightarrow H^j(X) \longrightarrow H^{i+j}(X)$$

- Which enables to turn $H^*(X) := \bigoplus_{i:\mathbb{N}} H^i(X)$ in a ring named the cohomology ring
- This cohomology ring is one more invariant :

$$H^*(X) \not\cong H^*(Y) \Longrightarrow X \not\cong Y$$

Χ	$H^0(X)$	$H^1(X)$	$H^2(X)$	Else	$H^*(X)$
$\mathbb{C}P^2$	\mathbb{Z}	1	\mathbb{Z}	1	$\mathbb{Z}[X]/\langle X^3 \rangle$
$\mathbb{S}^4 \bigvee \mathbb{S}^2$	\mathbb{Z}	1	\mathbb{Z}	1	$\mathbb{Z}[X,Y]/\langle X^2,XY,Y^2\rangle$

Objective?

Prove ring isomorphisms of the form:

$$H^*(\mathbb{K}^2) := \bigoplus_{i,N} H^i(\mathbb{K}^2) \cong \mathbb{Z}[X,Y]/\langle X^2,XY,2Y,Y^2 \rangle$$

Objective?

Prove ring isomorphisms of the form:

$$H^*(\mathbb{K}^2) \ := \ \bigoplus_{i:\mathbb{N}} \ H^i(\mathbb{K}^2) \ \cong \ \mathbb{Z}[X,Y]/\langle X^2,XY,2Y,Y^2\rangle$$

Issues?

1. Build a easy to work with \bigoplus to define graded rings

Objective?

Prove ring isomorphisms of the form:

$$H^*(\mathbb{K}^2) := \bigoplus_{i:\mathbb{N}} H^i(\mathbb{K}^2) \cong \mathbb{Z}[X,Y]/\langle X^2,XY,2Y,Y^2 \rangle$$

Issues?

- 1. Build a easy to work with \bigoplus to define graded rings
- 2. Find a practical notion of multivariate polynomials

Objective?

Prove ring isomorphisms of the form:

$$H^*(\mathbb{K}^2) \ := \ \bigoplus_{i:\mathbb{N}} \ H^i(\mathbb{K}^2) \ \cong \ \mathbb{Z}[X,Y]/\langle X^2,XY,2Y,Y^2\rangle$$

Issues?

- 1. Build a easy to work with \bigoplus to define graded rings
- 2. Find a practical notion of multivariate polynomials
- 3. Prove the different ring isomorphisms

Objective?

Prove ring isomorphisms of the form:

$$H^*(\mathbb{K}^2) := \bigoplus_{i:\mathbb{N}} H^i(\mathbb{K}^2) \cong \mathbb{Z}[X,Y]/\langle X^2,XY,2Y,Y^2\rangle$$

Issues?

- 1. Build a easy to work with \bigoplus to define graded rings
- 2. Find a practical notion of multivariate polynomials
- 3. Prove the different ring isomorphisms

Constraints?

• We are working in cubical agda \Longrightarrow no tactics!

Objective?

Prove ring isomorphisms of the form:

$$H^*(\mathbb{K}^2) := \bigoplus_{i:\mathbb{N}} H^i(\mathbb{K}^2) \cong \mathbb{Z}[X,Y]/\langle X^2, XY, 2Y, Y^2 \rangle$$

Issues?

- 1. Build a easy to work with \bigoplus to define graded rings
- 2. Find a practical notion of multivariate polynomials
- 3. Prove the different ring isomorphisms

Constraints?

- We are working in cubical agda \Longrightarrow no tactics!
- We want to be constructive

2. Building the direct sum and

graded rings

2. Building the direct sum and graded rings

2.1 Adapting the classical direct sum

Adapting the classical direct sum

The classical direct sum

$$\bigoplus_{i,I} G_i := \{ (g_i)_{i \in I} \mid \exists \text{ finite } J \subset I, \forall n \notin J, \ g_n = 0 \in G_n \}$$

Adapting the classical direct sum

The classical direct sum

$$\bigoplus_{i:I} G_i := \{(g_i)_{i \in I} \mid \exists \text{ finite } J \subset I, \forall n \notin J, \quad g_n = 0 \in G_n\}$$

A general definition ?

$$\sum_{f:\prod_{i:I}:G_i}\|\sum_{\substack{J:\,\mathrm{subset}(I)\\J\,\,\mathrm{finite}}}\prod_{\substack{i:I\\i\notin J}}f(i)\equiv 0_i\|$$

Adapting the classical direct sum

The classical direct sum

$$\bigoplus_{i,I} G_i := \{ (g_i)_{i \in I} \mid \exists \text{ finite } J \subset I, \forall n \notin J, \quad g_n = 0 \in G_n \}$$

A general definition ?

$$\sum_{f:\prod_{i:I}:G_i}\|\sum_{\substack{J:\,\mathrm{subset}(I)\\J\,\,\mathrm{finite}}}\prod_{\substack{i:I\\i\notin J}}f(i)\equiv 0_i\|$$

A solution when I is \mathbb{N}

$$\bigoplus_{n:\mathbb{N}}^{\mathrm{Fun}} \ G_n \ := \ \sum_{f:\prod_{n:\mathbb{N}}:G_n} \| \sum_{k:\mathbb{N}} \prod_{\substack{k:\mathbb{N}\\k < i}} f(i) \equiv 0_i \|$$

Abelian group structure

Given $f,g:\bigoplus_{n:\mathbb{N}}^{\operatorname{Fun}}G_n$, an abelian group structure can be defined pointwise:

$$(f+g)(n)=f(n)+_ng(n)$$

Abelian group structure

Given $f,g:\bigoplus_{n:\mathbb{N}}^{\operatorname{Fun}}G_n$, an abelian group structure can be defined pointwise:

$$(f+g)(n)=f(n)+_ng(n)$$

A product?

Given $\star:$ $\textit{G}_{\textit{i}}\rightarrow\textit{G}_{\textit{j}}\rightarrow\textit{G}_{\textit{i}+\textit{j}}$ over (N,0,+), we would like to define :

$$(f \times g)(n) = \sum_{i=0}^{n} f(i) \star g(n-i)$$

Abelian group structure

Given $f,g: \bigoplus_{n:\mathbb{N}}^{\operatorname{Fun}} G_n$, an abelian group structure can be defined pointwise: $(f+g)(n)=f(n)+_n g(n)$

A product ?

Given $\star:$ $\textit{G}_{\textit{i}}\rightarrow\textit{G}_{\textit{j}}\rightarrow\textit{G}_{\textit{i}+\textit{j}}$ over (N,0,+), we would like to define :

$$(f \times g)(n) = \sum_{i=0}^{n} f(i) \star g(n-i)$$

but it doesn't type check because $G_{i+(n-i)} \neq G_n$ definitionally

Abelian group structure

Given $f,g: \bigoplus_{n:\mathbb{N}}^{\operatorname{Fun}} G_n$, an abelian group structure can be defined pointwise: $(f+g)(n) = f(n) +_n g(n)$

Given $\star: G_i \to G_j \to G_{i+j}$ over $(\mathbb{N},0,+)$, we would like to define :

$$(f \times g)(n) = \sum_{i=0}^{n} f(i) \star g(n-i)$$

but it doesn't type check because $G_{i+(n-i)} \neq G_n$ definitionally

Transports are needed

$$(f \times g)(n) = \sum_{i=0}^{n} \uparrow_{i}^{n} (f(i) \star g(n-i))$$

Proving the properties ?

Proving associativity is however complicated, it unfolds to proving :

$$(f \times (g \times h))(n) = \sum_{i=0}^{n} \uparrow_{i}^{n} (f(i) \star (g \times h)(n-i))$$

$$= \sum_{i=0}^{n} \uparrow_{i}^{n} \left(f(i) \star \left(\sum_{j=0}^{n-i} \uparrow_{j}^{n-i} (g(j) \star h(n-i-j)) \right) \right)$$

$$\equiv \dots$$

$$= \sum_{i=0}^{n} \uparrow_{i}^{n} \left(\left(\sum_{j=0}^{i} \uparrow_{j}^{i} (f(j) \star g(i-j)) \right) \star h(n-i) \right)$$

$$= \sum_{i=0}^{n} \uparrow_{i}^{n} ((f \times g)(i) \star h(n-i))$$

$$= ((f \times g) \times h)(n)$$

2. Building the direct sum and graded rings

2.2 A quotient inductive type definition

A quotient inductive type definition

```
data \oplusHIT (I : Type) (G : I \rightarrow AbGroup) : Type where
   -- Point constructors
   0⊕ : ⊕HIT I G
   base : (n:I) \rightarrow \langle G n \rangle \rightarrow \oplus HIT I G
   +\oplus : \oplusHIT / G \rightarrow \oplusHIT / G \rightarrow \oplusHIT / G
   -- Abelian group laws
   +\oplus Assoc: \forall x y z \rightarrow x + \oplus (y + \oplus z) \equiv (x + \oplus y) + \oplus z
   +\oplus Rid : \forall x \rightarrow x +\oplus 0 \oplus \equiv x
   +\oplus Comm : \forall x y \rightarrow x + \oplus y \equiv y + \oplus x
   -- Morphism laws
   base0 \oplus : \forall n \to \text{base } n \ 0 \langle G n \rangle \equiv 0 \oplus
   base+\oplus : \forall n \times y \rightarrow \text{base } n \times + \oplus \text{ base } n \text{ } y \equiv \text{ base } n \text{ } (x + \langle G n \rangle y)
   -- Set truncation
  trunc : isSet (\oplusHIT / G)
```

Defining a graded ring

Defining the product

Given a monoid (I,e,+) and $\star:G_i\to G_j\to G_{i+j}$, we can define a product $_\times_$ by double recursion :

Defining the product

Given a monoid (I, e, +) and $\star : G_i \to G_j \to G_{i+j}$, we can define a product $\underline{\ } \times \underline{\ }$ by double recursion :

 $\bullet~$ 0+, _++__ are trivial cases to define

Defining the product

- $\bullet~0\oplus,~_+\oplus_$ are trivial cases to define
- To base $n \times x$, base $m \times y$, we associate base $(n + m) \times (x \times y)$

Defining the product

Given a monoid (I, e, +) and $\star : G_i \to G_j \to G_{i+j}$, we can define a product $\underline{\quad} \times \underline{\quad}$ by double recursion :

- $\bullet~0\oplus$, $_+\oplus_$ are trivial cases to define
- To base $n \times x$, base $m \times y$, we associate base $(n + m) \times (x \times y)$
- The different higher equations are easy to verify

Defining the product

Given a monoid (I, e, +) and $\star : G_i \to G_j \to G_{i+j}$, we can define a product $\underline{\quad} \times \underline{\quad}$ by double recursion :

- ullet 0 \oplus , $_+\oplus_$ are trivial cases to define
- To base $n \times x$, base $m \times y$, we associate base $(n + m) \times (x \times y)$
- The different higher equations are easy to verify

Proving associativity

We can again reason by triple induction :

 $\bullet~$ 0 \oplus , $_+\oplus_$ cases are automatic

Defining the product

Given a monoid (I, e, +) and $\star : G_i \to G_j \to G_{i+j}$, we can define a product $\underline{\quad} \times \underline{\quad}$ by double recursion :

- ullet 0 \oplus , $_+\oplus_$ are trivial cases to define
- To base $n \times x$, base $m \times y$, we associate base $(n + m) \times (x \times y)$
- The different higher equations are easy to verify

Proving associativity

We can again reason by triple induction:

- $\bullet~$ 0 \oplus , $_+\oplus_$ cases are automatic
- For the base case, it unfolds to proving :

base
$$(n+(m+k))$$
 $(x*(y*z)) \equiv base ((n+m)+k)$ $((x*y)*z)$

Defining the product

Given a monoid (I, e, +) and $\star : G_i \to G_j \to G_{i+j}$, we can define a product $\underline{\quad} \times \underline{\quad}$ by double recursion :

- $\bullet~0\oplus$, $_+\oplus_$ are trivial cases to define
- To base $n \times x$, base $m \times y$, we associate base $(n + m) \times (x \times y)$
- The different higher equations are easy to verify

Proving associativity

We can again reason by triple induction :

- $\bullet~$ 0 \oplus , $_+\oplus_$ cases are automatic
- For the base case, it unfolds to proving : base (n+(m+k)) $(x*(y*z)) \equiv base((n+m)+k)$ ((x*y)*z)
- All equations are trivial

Multivariate polynomials

• We can define $R[X] := \bigoplus_{i:\mathbb{N}}^{\operatorname{HIT}} R$

Multivariate polynomials

- We can define $R[X] := \bigoplus_{i:\mathbb{N}}^{\mathrm{HIT}} R$
- More generally, we can just define $R[X_1,...,X_n]:=\bigoplus_{i:\mathbb{N}^n}^{\mathrm{HIT}}R$

Multivariate polynomials

- We can define $R[X] := \bigoplus_{i \in \mathbb{N}}^{HIT} R$
- More generally, we can just define $R[X_1,...,X_n] := \bigoplus_{i:\mathbb{N}^n}^{\mathrm{HIT}} R$

Pros for our purpose

• The cohomology ring $H^*(X)$ can be defined in the same way

Multivariate polynomials

- We can define $R[X] := \bigoplus_{i:\mathbb{N}}^{\mathrm{HIT}} R$
- More generally, we can just define $R[X_1,...,X_n] := \bigoplus_{i:\mathbb{N}^n}^{\mathrm{HIT}} R$

- The cohomology ring $H^*(X)$ can be defined in the same way
- This enables a direct definition of multivariate polynomials

Multivariate polynomials

- We can define $R[X] := \bigoplus_{i : \mathbb{N}}^{\mathrm{HIT}} R$
- More generally, we can just define $R[X_1,...,X_n] := \bigoplus_{i:\mathbb{N}^n}^{\mathrm{HIT}} R$

- The cohomology ring $H^*(X)$ can be defined in the same way
- This enables a direct definition of multivariate polynomials
- The elements and the product are intuitive and easy to work with

Multivariate polynomials

- We can define $R[X] := \bigoplus_{i:\mathbb{N}}^{\mathrm{HIT}} R$
- More generally, we can just define $R[X_1,...,X_n] := \bigoplus_{i:\mathbb{N}^n}^{\mathrm{HIT}} R$

- The cohomology ring $H^*(X)$ can be defined in the same way
- This enables a direct definition of multivariate polynomials
- The elements and the product are intuitive and easy to work with
 - \triangleright Elements are generated by 0, aX^n , +

Multivariate polynomials

- We can define $R[X] := \bigoplus_{i:\mathbb{N}}^{\operatorname{HIT}} R$
- More generally, we can just define $R[X_1,...,X_n]:=\bigoplus_{i:\mathbb{N}^n}^{\mathrm{HIT}}R$

- The cohomology ring $H^*(X)$ can be defined in the same way
- This enables a direct definition of multivariate polynomials
- The elements and the product are intuitive and easy to work with
 - \triangleright Elements are generated by 0, aX^n , +
 - \triangleright The product is basically generated by $aX^n \times bX^m = abX^{n+m}$

3. Proving the isomorphisms?

Objective?

Prove ring isomorphisms of the form:

$$H^*(\mathbb{K}^2) := \bigoplus_{i:\mathbb{N}} H^i(\mathbb{K}^2) \cong \mathbb{Z}[X,Y]/\langle X^2,XY,2Y,Y^2 \rangle$$

Objective?

Prove ring isomorphisms of the form:

$$H^*(\mathbb{K}^2) := \bigoplus_{i:\mathbb{N}} H^i(\mathbb{K}^2) \cong \mathbb{Z}[X,Y]/\langle X^2,XY,2Y,Y^2 \rangle$$

Objective?

Prove ring isomorphisms of the form:

$$H^*(\mathbb{K}^2) := \bigoplus_{i:\mathbb{N}} H^i(\mathbb{K}^2) \cong \mathbb{Z}[X,Y]/\langle X^2,XY,2Y,Y^2\rangle$$

A method

1. We build a function $\psi: \mathbb{Z}[X,Y] \longrightarrow H^*(\mathbb{K}^2)$ by recursion

Objective?

Prove ring isomorphisms of the form:

$$H^*(\mathbb{K}^2) := \bigoplus_{i:\mathbb{N}} H^i(\mathbb{K}^2) \cong \mathbb{Z}[X,Y]/\langle X^2,XY,2Y,Y^2 \rangle$$

- 1. We build a function $\psi: \mathbb{Z}[X,Y] \longrightarrow H^*(\mathbb{K}^2)$ by recursion
- 2. Prove that ψ is a ring morphism by induction

Objective?

Prove ring isomorphisms of the form:

$$H^*(\mathbb{K}^2) := \bigoplus_{i:\mathbb{N}} H^i(\mathbb{K}^2) \cong \mathbb{Z}[X,Y]/\langle X^2,XY,2Y,Y^2 \rangle$$

- 1. We build a function $\psi: \mathbb{Z}[X,Y] \longrightarrow H^*(\mathbb{K}^2)$ by recursion
- 2. Prove that ψ is a ring morphism by induction
- 3. Get a ring morphism $\mathbb{Z}[X,Y]/\langle X^2,XY,2Y,Y^2\rangle \longrightarrow H^*(\mathbb{K}^2)$ by proving it cancels on $X^2,XY,2Y,Y^2$

Objective?

Prove ring isomorphisms of the form:

$$H^*(\mathbb{K}^2) := \bigoplus_{i:\mathbb{N}} H^i(\mathbb{K}^2) \cong \mathbb{Z}[X,Y]/\langle X^2, XY, 2Y, Y^2 \rangle$$

- 1. We build a function $\psi: \mathbb{Z}[X,Y] \longrightarrow H^*(\mathbb{K}^2)$ by recursion
- 2. Prove that ψ is a ring morphism by induction
- 3. Get a ring morphism $\mathbb{Z}[X,Y]/\langle X^2,XY,2Y,Y^2\rangle \longrightarrow H^*(\mathbb{K}^2)$ by proving it cancels on $X^2,XY,2Y,Y^2$
- 4. Build an inverse $H^*(\mathbb{K}^2) \longrightarrow \mathbb{Z}[X,Y]/\langle X^2,XY,2Y,Y^2\rangle$ by recursion

The method in practice

Thanks to the data structure:

1. Building the ψ functions is very direct

The method in practice

- 1. Building the ψ functions is very direct
- 2. Proving ψ is a ring morphism :

The method in practice

- 1. Building the ψ functions is very direct
- 2. Proving ψ is a ring morphism :
 - ightarrow The only non trivial case is proving ψ respects the product

The method in practice

- 1. Building the ψ functions is very direct
- 2. Proving ψ is a ring morphism :
 - \triangleright The only non trivial case is proving ψ respects the product
 - > This unfolds very directly to proving :

$$\psi(X^{n+m}) = \psi(X^n) \smile \psi(X^m)$$

The method in practice

Thanks to the data structure:

- 1. Building the ψ functions is very direct
- 2. Proving ψ is a ring morphism :
 - ightarrow The only non trivial case is proving ψ respects the product
 - > This unfolds very directly to proving :

$$\psi(X^{n+m}) = \psi(X^n) \smile \psi(X^m)$$

3. ψ cancels on X^2 , XY, 2Y, Y^2 by definition

The method in practice

- 1. Building the ψ functions is very direct
- 2. Proving ψ is a ring morphism :
 - ightharpoonup The only non trivial case is proving ψ respects the product
 - > This unfolds very directly to proving :

$$\psi(X^{n+m}) = \psi(X^n) \smile \psi(X^m)$$

- 3. ψ cancels on X^2 , XY, 2Y, Y^2 by definition
- 4. Building an inverse function is equally direct

Proving it is a ring morphism

• So we just need to prove :

$$\psi(X^{n+m}) = \psi(X^n) \smile \psi(X^m)$$

Proving it is a ring morphism

So we just need to prove :

$$\psi(X^{n+m}) = \psi(X^n) \smile \psi(X^m)$$

The benefit of synthetic mathematics in HoTT

• Spaces, functions... can be defined by induction

Proving it is a ring morphism

• So we just need to prove :

$$\psi(X^{n+m}) = \psi(X^n) \smile \psi(X^m)$$

The benefit of synthetic mathematics in HoTT

• Spaces, functions... can be defined by induction

 $\, \triangleright \,$ It gives a short and "more graspable" definition of cohomology

Proving it is a ring morphism

• So we just need to prove :

$$\psi(X^{n+m}) = \psi(X^n) \smile \psi(X^m)$$

- Spaces, functions... can be defined by induction
 - ▷ It gives a short and "more graspable" definition of cohomology
 - ightharpoonup Possible to directly define the cup product \smile by recursion

Proving it is a ring morphism

• So we just need to prove :

$$\psi(X^{n+m}) = \psi(X^n) \smile \psi(X^m)$$

- Spaces, functions... can be defined by induction
 - ▷ It gives a short and "more graspable" definition of cohomology
 - ightharpoonup Possible to directly define the cup product \smile by recursion
- It is possible to directly manipulate paths

Proving it is a ring morphism

So we just need to prove :

$$\psi(X^{n+m}) = \psi(X^n) \smile \psi(X^m)$$

- Spaces, functions... can be defined by induction
 - ▷ It gives a short and "more graspable" definition of cohomology
 - ightharpoonup Possible to directly define the cup product \smile by recursion
- It is possible to directly manipulate paths
 - ightarrow Simpler and short computation of many cohomology groups

Proving it is a ring morphism

So we just need to prove :

$$\psi(X^{n+m}) = \psi(X^n) \smile \psi(X^m)$$

- Spaces, functions... can be defined by induction
 - ▷ It gives a short and "more graspable" definition of cohomology
 - ightharpoonup Possible to directly define the cup product \smile by recursion
- It is possible to directly manipulate paths
 - > Simpler and short computation of many cohomology groups
 - \triangleright Possible to directly prove the properties of the cup product

Proving it is a ring morphism

So we just need to prove :

$$\psi(X^{n+m}) = \psi(X^n) \smile \psi(X^m)$$

- Spaces, functions... can be defined by induction
 - ▷ It gives a short and "more graspable" definition of cohomology
 - ightharpoonup Possible to directly define the cup product \smile by recursion
- It is possible to directly manipulate paths
 - > Simpler and short computation of many cohomology groups
 - \triangleright Possible to directly prove the properties of the cup product
 - Possible to directly characterize the behavior of the cup product on spaces

Achievement in the talk

ullet Built $H^*(X)$ and a new definition of the multivariate polynomials

Achievement in the talk

- Built $H^*(X)$ and a new definition of the multivariate polynomials
- Then explained how to compute cohomology ring

Achievement in the talk

- Built $H^*(X)$ and a new definition of the multivariate polynomials
- Then explained how to compute cohomology ring
- Showed how data representation influence formalization

Achievement in the talk

- Built $H^*(X)$ and a new definition of the multivariate polynomials
- Then explained how to compute cohomology ring
- Showed how data representation influence formalization

More in the paper

• Details on direct sum, graded rings and polynomials

Achievement in the talk

- Built $H^*(X)$ and a new definition of the multivariate polynomials
- Then explained how to compute cohomology ring
- Showed how data representation influence formalization

More in the paper

- Details on direct sum, graded rings and polynomials
- A data refinement problem in mathematics

Achievement in the talk

- Built $H^*(X)$ and a new definition of the multivariate polynomials
- Then explained how to compute cohomology ring
- Showed how data representation influence formalization

More in the paper

- Details on direct sum, graded rings and polynomials
- A data refinement problem in mathematics
- Detailed computation of the Z cohomology ring of:
 Sⁿ, CP², S⁴ ∨ S², K², RP² ∨ S¹,

Achievement in the talk

- Built $H^*(X)$ and a new definition of the multivariate polynomials
- Then explained how to compute cohomology ring
- Showed how data representation influence formalization

More in the paper

- Details on direct sum, graded rings and polynomials
- A data refinement problem in mathematics
- Detailed computation of the \mathbb{Z} cohomology ring of : \mathbb{S}^n , $\mathbb{C}P^2$, $\mathbb{S}^4 \vee \mathbb{S}^2$, \mathbb{K}^2 , $\mathbb{R}P^2 \vee \mathbb{S}^1$,
- Detailed computation of the Z/2Z cohomology ring of:
 K², RP² ∨ S¹,