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Introduction



Part 1

The History of Parametricity

Reynolds, 1983 : The Abstraction Theorem

Wadler, 1989 : The introduction to Parametricity

1990 - 2020 : A bunch of things

Bernardy et al, 2012 : Internalising Parametricity
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Part 2

Usual attempts to transport proofs

Parametricity

The Hetereogenous Parametricity

The Univalence Axiom
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Part 3

Univalent Relational Parametricity

Univalent Parametricity : Definitions, interests and limits

Univalent Relational Parametricity

Proving the Abstraction Theorem for CCω

The Abstraction Theorem for Parametric Inductive Types
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The History of Parametricity



The History of Parametricity

Reynolds, 1983 : The Abstraction Theorem



Reynolds original approach

"Type structure is a syntatic discipline for enforcing levels of
abstraction"

"Types are not limited to computation. Thus they should be
explicable without invoking constructs, such as Scott’s domains,
that are peculiar to the theory of computation"

• Introduces the system T with boolean, type variable and
product in a set setting
• Define a set model of the system T and traduces the func-

tions by themselves.
• On this defines a relation semantics that follow the previous

one.
• Abstraction theorem : if two sets asignements are related,

then the interpretation are
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The History of Parametricity

Wadler, 1989 : The introduction to
Parametricity



The System F

Types :
T ::= X | A→ B | ∀X .A

Terms :
t ::= x | λ(x : X ). t | uv | ΛX . t | tU

Reductions :
βt | ηt | βT | ηT

Properties : Confluence, Strongly Normalising, F ' HA2
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Parametricity for the system F

We write A : A⇔ A′ relation between A and A′. We’ll
asumme A : A⇔ A′ and B : B ⇔ B ′.

• For Bin and N, the relation is the equality.

• Given positive inductive types, the parametricity is
pontwise on the constructors.

− ((x , y), (x ′, y ′)) ∈ A× B iff (x , x ′) ∈ A ∧ (y , y ′) ∈ B
− ([], []) ∈ A∗ and ((a :: l), (a′ :: l)) ∈ A∗ iif

(a, a) ∈ A ∧ (l , l ′) ∈ A∗

• (f , f ′) ∈ A → B iff ∀(a, a′) ∈ A, (f a, f ′ a′) ∈ B
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The special case of Polymorphism

For the moment there is only one relation the "pointwise
equality" and it is homogenous !

The trick is in polymorphism function ∀X .F (X ) :

(g , g ′) ∈ ∀X .F (X ) iff ∀(A : A⇔ A′), (gA, g
′
A′) ∈ F(A)

Yet a : A→ A′ is a special case of relation between a : A ⇔ A′.
The relation generated are much broader than equality
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Reynold’s Abstraction Theorem

Theorem (Abstraction Theorem)

For all closed term t of types T then (t, t) ∈ T

Proof.

Models !
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Free Theorem : The identity

There is only one function of type ∀X .X → X :

Let r : ∀X .X → X then

(r , r) ∈ ∀X . X → X
∀(A : A⇔ A′), (rA, rA′) ∈ A → A
∀(A : A⇔ A′), ∀(a, a′) ∈ A∗, (rA a, rA′ a′) ∈ A

So in the special case of A = {(x , y), x = a} with a : A :

∀(a : A). a′ = a⇔ (rA a′) = a

So in a : A :

rA a = a ie rA = idA ie r = id
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Free Theorem : Invariant under rearrengement

Let r : ∀X .X ∗ → X ∗ then

(r , r) ∈ ∀X . X ∗ → X ∗

∀(A : A⇔ A′), (rA, rA′) ∈ A∗ → A∗

∀(A : A⇔ A′), ∀(l , l ′) ∈ A∗, (rA l , rA′ l ′) ∈ A

So in the special case of A = a : A → A′ :

a∗ (rA l) = rA′ (a∗ l)
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Free Theorem : Other compositional results

filter : ∀X .(X → Bool)→ X ∗ → X ∗

a∗ ◦ (filterA p) = (sort p′) ◦ a∗

sort : ∀X .(X → X → Bool)→ X ∗ → X ∗

∀(x , y : A).

(x < y) = (a x <′ a y)⇒ a∗ ◦ (sortA <) = (sort <′) ◦ a∗

K : ∀X .∀Y .X → Y → Y

a ◦ (KAB x y) = KA′B′ (a x) (b y)
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Free Theorem : Some interresting results

The different results can be "sorted" in three kinds :

• Unicity results :

− ∀X . X is empty
− ∀X . X → X unique inhabitant is Id

− ∀X .∀Y .(X → Y )→ (X ∗ → Y ∗), every function is
the composition of rearrengement and lifting

• Composition results : previous slides

• A ' ∀X .(A→ X )→ X
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The History of Parametricity

1990 - 2020 : A bunch of things



Extend Parametricity to other type system

• Takeuti, 2004 (unpublished) : Try to extend it to CC

• Vytiniotis and Weirich, 2010 : Extension to Fω

• Krishnaswami and Dreyer, 2013 : Parametricity and
extensional type theory

• Bernardy et al, 2015 : Adding the parametricity internaly
to MLLT and giving a pre-sheaf model

• Cavaballo and Harper, 2020 : Mixing cubical type theory
and parametricity

• ...
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Syntax and Semantics

In the classical setting models are used, after 2012 it is
formulas that represent the program.

• Mairson, 1991 : introduces the concepts

• Plotkin and Abadi 1993 : Define a logic to express
parametricity for the system F

• Wadler, 2007 : The abstraction theorem can be seen as
projection of HA2 in the system F

• ...
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Parametricity for data refinement problem

• Magaud and Bertot, 2000 : Transporting proof for a
librairy to another using isomorphism, break on type
dependancy

• Cohen, Dénès and Mörtberg : CoqEAL uses parametricty
to transport proof dealing with isomorphism and quotient.
Break on type dependancy.

• ...
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The History of Parametricity

Bernardy et al, 2012 : Internalising
Parametricity



CCω

CCω is the PTS that is behind Coq :

• A hierarchy of universes U〉 with a type of proposition ?

• The following typing rules ? : U0 and Ui : Ui+1

• ? is impredicative otherwise the max rule applies
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Parametricity for CCω

JUiKp :=
∏

A,B:Ui

A→ B → Ui+1

t∏
a:A

B a

|

p

:=
∏

f :
∏

a:A B a
g :
∏

a′:A′ B
′ a

∏
a:A
a′:A′

aε:JAKp a a′

JB aKp f (a) g(a)

JxKp := x ε

Jλ (x : A). tKp := λ (x : A)(x ′ : A′)(x ε : JAK a a′). JtK

JuvKp := JtK u u′ JuK

JΓ, x : AK := JΓKp , x : A, x ′ : A′, x ε : JAK x x ′)
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The Abstraction Theorem

Theorem (The Abstraction Theorem)

If Γ ` a : A then JΓK ` JaK : JAK a a′

Proof.
Simple induction

The special cases of universes typing rules :

Ui : Ui+1 =⇒ JUiK : JUi+1K Ui Ui

∏
a:A

B a : Ui =⇒

t∏
a:A

B a

|

: JUiK
∏
a:A

B a
∏
a′:A′

B ′ a′
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Usual attempts to transport proofs



Usual attempts to transport proofs

Parametricity



The Anticipation Problem

The parametricity is reflective and homogenous so it not
possible to directly relate + and +bin.
So one need to find an abstratction P that can be instantiated
with N or Bin.

P :
∑
A:Ui

∑
0A:A

∑
SA:A→A

(
∏
C :Ui

C → (B → C → C )→ B → C )

such that (N, 0, S ,RecN) : P and (Bin, 0Bin, SBin,NRecBin) : P

+A : P .1→ P .1→ P .1

+A : P .4 P .1 (λx → x) (λ x g → P .3 (g x))

Then use the parametricity and instantiate it with the type
and equivalence
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The Computation Problem

Not every term can be express using a general framework :

P : N→ U0

P := RecN (λ _→ U0) (0 = 0) (λ _ _→ ⊥)

Diff (n : N) (p : 0 = S n) : ⊥
Diff := RecEq (N 0 (λ n _ → P n) refl) (S n) p

This type check only because P (S n) ≡ ⊥.

This wouldn’t be the case for NRecBin. And so it not possible
to define it for a abstraction of the types P .
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Usual attempts to transport proofs

The Hetereogenous Parametricity



Adding a context

The issue with the previous framework is that it doesn’t allow
to relate 0 and 0Bin. However, it is possible to do by adding a
global context defined such that :

Ξ1 = (x◦ : A◦, x• : A•, x⊗ : JA◦K x◦ x•)

Ξn+1 = Ξn, (x◦n+1 : A◦n+1, x•n+1 : A•n+1, x⊗n+1 :
q

A◦n+1

yΞn x◦n+1 x•n+1)

Where J_KΞ is the classic parametricity with A◦ replaced by
A• and JxK by x⊗.
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White Box Translation

The first and second projections can be seen as contexts |Ξ|◦
and |Ξ|•.
In which it possible to define the White Box Translation ↑� to
be the identity function yet replacing x◦ by x•.

Theorem (The White Box Fundamental Property)

If |Ξ|◦ ` a : A then :

− |Ξ|• ` (↑� a) : (↑� A)

− |Ξ| : JAKΞ
p a (↑ �a)
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Over N and Bin 1/3

One point of transporting proofs is to be able to switch from
representation, for instance the natural to the binary.
Given an equivalence e : N ' Bin, we denote ↑N: Bin→ N.
Then defining R :=

∏
n:N

∏
b:Bin n =↑N b, we have (N,Bin,R).

0⊗ : JNK 0 0Bin
S⊗ : JN→ NK S SBin
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Over N and Bin 2/3

One point of transporting proofs is to be able to switch from
representation, for instance the natural to the binary.
Given an equivalence e : N ' Bin, we denote ↑N: Bin→ N.
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∏
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Over N and Bin 3/3

One point of transporting proofs is to be able to switch from
representation, for instance the natural to the binary.
Given an equivalence e : N ' Bin, we denote ↑N: Bin→ N.
Then defining R :=

∏
n:N

∏
b:Bin n =↑N b, we have (N,Bin,R).

0⊗ : 0 =↑N 0Bin

S⊗ :
∏
b:Bin

S (↑N b) =↑N (SBin b)

Then in ((N,Bin,R), (0, 0Bin, 0×), (S , SBin, S
⊗)) it is possible

to relate RecN and N− RecBin
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Translating the addition 1/2

Using the WB translation, it is possible to transport operators :

↑� + : Bin→ Bin→ Bin

And the parametricity gives us :

J+K : JN→ N→ NK + +Bin

J+K :
∏
n:N
b:Bin

n =↑N b →
∏
n′:N
b′:Bin

n′ =↑N→ n + m =↑N (b +Bin b′)
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Transporting Proofs

How to transport proofs and not just operators like :∏
n,m:N

n + m = m + n

Need to add the support of basic types like 0, 1, N, Bin but
also some type constructors like =, list, vec ...

Possible without to much trouble, however the translation of
proofs still fails on dependent types.
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Usual attempts to transport proofs

The Univalence Axiom



Using Equivalences

Just using the equivalence properties doesn’t suffice :

(↑N b) +N (↑N b′) = (↑N b′) +N (↑N b)

↑Bin ((↑N b) +N (↑N b′)) =↑Bin ((↑N b′) +N (↑N b))

(↑Bin↑N b) +Bin (↑Bin↑N b′) = (↑Bin↑N b′) +Bin (↑Bin↑N b)

b +Bin b′ = b′ +Bin b

Some issue with dependancy, for instance P(g(f a)) is not the
same type as P a.
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Using the univalence to translate proof

Theorem (Lifting an equivalence)
Given two types A,B and P a family of types, then
A ' B → P A ' P B

Proof.
A ' B → A = B → P A = P B → P A ' P B

How to prove that "+ = +Bin” ?

Actually possible to prove the equality between (N,+N) and
(Bin,+_Bin) in ΣA:U0A→ A→ A
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Transport

Then given p : (N,+N) = (Bin,+Bin) when can do do the
following :

P_comm = λ X _.
∏
x ,y :A

X .2 x y = X .2 y x

+Bin_comm = transportP_comm (p,+N_comm)
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In the cubical Setting

In the cubical setting there is heterogenous paths :

addp : PathP

(λi → N ≡ Bin i → N ≡ Bin i → N ≡ Bin i)

+N +Bin

Then it possible to transport along this path :

transport

(λi → (x , y : N ≡ Bin i)→ x (addp i) y ≡ y (addp i) x)

+N _comm
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Univalent Relational Parametricity



Univalent Relational Parametricity

Univalent Parametricity : Definitions,
interests and limits



What is the goal of Univalent Parametricity ?

The goal is to stength parametricity over types such as two
types are parametric iff they are related and equivalent.

• Define JUiK :=
∏

A:Ui

∏
B:Ui A ' B .

But then the typing rules is no long verified :

JUiK : JUi+1K Ui Ui∏
A,B:Ui

A ' B : Ui ' Ui

• Ask for a relation and an equivalence between A and A′

No connections between the two =⇒ won’t rise to CIC
because of equality
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Solution ?

Therefore we need a coherence condition between R : A →
B → Ui and e : A ' B

ecoh :=
∏
a:A
b:B

R a b ' (a =↑e b)

Then the parametricity of Ui is :

JUiK :=
∏

A,B:Ui

∑
R:A→B→Ui

∑
e:A'B

∏
a:A
b:B

R a b ' a =↑e b

Yet we want to be able to prove :

JUiK : JUi+1K Ui Ui
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Need to modify the translation

[Ui ] := (
∏

A,B:Ui

∑
R:A→B→Ui

∑
e:A'B

∏
a:A
b:B

R a b ' a =↑e b, idUi , univUi )

[
∏
a:A

B a] := (
∏

f :
∏

a:A B a
g :
∏

a′:A′ B
′ a

∏
a:A
a′:A′

aε:JAK a a′

JB aK f (a) g(a), equiv Π, univ Π)

[x ] = x ε

[λx .t] = λ(x : A)(x ′ : A)(x ε : JAK x x ′).[t]

[uv ] = [u] v v ′ [v ]

JAK = fst [A]
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Reynolds Absraction Theorem

Theorem (The Abstaction Theorem)

If Γ ` a : A then JAK ` [a] : JAK a a′

Proof.

Very Very Hard !

First, let see why the unvialent parametricity enables automatic
transport of proofs !
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The White Box and Black Box translations

Theorem (The White Box Fundamental Property)

If |Ξ|◦ ` a : A then |Ξ|• ` (↑� a) : (↑� A) and
|Ξ| : JAKΞ

p a (↑ �a)

Theorem (The Black Box Fundamental Property)
For A,B : Ui , if A ≈ B then there is ↑�: A→ B

We can use the White Box Fundamental Property to paramet-
ricaly translate operators and proof types such as∏

n:N

(0 = S n)→ ⊥ ≈
∏
b:Bin

(0Bin = SBin b)→ ⊥

Then automatically transport the proof by the Black Box Fun-
damental Property !
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What goes wrong in the proof ?

Where does this proof goes wrong ? Veryfing the Universes
typing rules !

For the rule Ui : Ui+1 we need a term such that :∏
A,B:Ui

(JUiK A B ' A = B)

Given A,B : Ui this unfolds to

(
∑

R:A→B→Ui

∑
e:A'B

∏
a:A
b:B

R a b ' a =↑e b) ' (A ' B)
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A short proof

∑
R:A→B→Ui

∑
e:A'B

∏
a:A
b:B

R a b ' a =↑e b

∑
e:A'B

∑
R:A→B→Ui

∏
a:A
b:B

R a b ' a =↑e b

∑
e:A'B

∑
R:A→B→Ui

∏
a:A
b:B

R a b = (a =↑e b)

'
∑
e:A'B

∑
R:A→B→Ui

R = λ(a : A).λ(b : B). a =↑e b

' A ' B
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For CCω

Here the equivalence is the identity !

Not hard to define one for product. But proving the coherence
condition gets really hard. More than 500 lignes of Coq.

"This part is quite involved. In essence, this is where we prove
that transporting in many hard- to-predict places is equivalent
to transporting only at the top level. This is done by repeated
use of commutativity lemmas of transport of equality over func-
tions."

Doesn’t rise to CIC automatically.
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Where does the definition goes wrong ?

JUiK :=
∏

A,B:Ui

∑
R:A→B→Ui

∑
e:A'B

∏
a:A
b:B

R a b ' a =↑e b

The issues with the Univalent Parametricity are :

• The information is spread between R and e

• The coherence condition is on terms !

• The definition is asymmetrical !
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Univalent Relational Parametricity

Univalent Relational Parametricity



A new definition of the equivalence

A new definition of the equivalence :

A ./ B :=
∑

R:A→B→Ui

(
∏
a:A

isContr(
∑
b:B

R a b))

× (
∏
b:B

isContr(
∑
a:A

R a b))

Then by denoting isFun R :=
∏

a:A isContr(
∑

b:B R a b) we
get :

A ./ B :=
∑

R:A→B→Ui

isFun(R)× isFun(Rop)

And the very important theorem :

(A ' B) ' (A ./ B)
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The Univalent Relational Parametricity

With new definition it is possible to replace

JUiK :=
∏

A,B:Ui

∑
R:A→B→Ui

∑
e:A'B

∏
a:A
b:B

R a b ' a =↑e b

by the following one :

JUiK :=
∏

A,B:Ui

∑
R:A→B→Ui

isFun(R)× isFun(Rop)

:=
∏

A,B:Ui

A ./ B

Thus if we can prove the abstraction theorem for this definition,
then the white box and black box theorems are preserved !
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Why is definition better ?

Why is this definition better for proving the abstract theorem ?

JUiK :=
∏

A,B:Ui

∑
R:A→B→Ui

isFun(R)× isFun(Rop)

isFun(R) :=
∏
a:A

isContr(
∑
b:B

R a b)

• The definition is no longer spreading the information

• The cohernece condition on R is no longer on term, it is
on spaces.

• The definition is symmetrical
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Univalent Relational Parametricity

Proving the Abstraction Theorem for CCω



Need to modify the translation

[Ui ] := (
∏

A,B:Ui

∑
R:A→B→Ui

isFun(R)× isFun(Rop), FPUi

[
∏
a:A

B a] := (
∏

f :
∏

a:A B a
g :
∏

a′:A′ B
′ a

∏
a:A
a′:A′

aε:JAK a a′

JB aK f (a) g(a), FPΠ)

[x ] = x ε

[λx .t] = λ(x : A)(x ′ : A)(x ε : JAK x x ′).[t]

[uv ] = [u] v v ′ [v ]

JAK = fst [A]
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Proof for Ui : Ui+1

We nedd to prove [Ui ] : JUi+1K Ui Ui .

The relation is fixed and is

FRUi :=
∏

A,B:Ui

A ./ B

So it suffices to prove isFun(FRUi ) and isFun(FRop
Ui )

isFun(
∏

A,B:Ui

A ./ B) =
∏
A:Ui

isContr(
∑
B:Ui

A ./ B)

Yet
(
∑
B:Ui

A ./ B) ' (
∑
B:Ui

A ' B) ' (
∑
B:Ui

A = B)

This proves isFun(FRUi ). By reversing A and B , we get
isFun(FRop

Ui ) and so the result.
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Proof for the function type 1/3

As before the relation is fixed

FRΠ :=
∏

f :
∏

a:A B a

∏
g :
∏

a′:A′ B
′ a′

∏
a:A
a′:A′

aε:JAK a a′

JBK (f a) (g a′)

First we nedd to prove isContr(FRΠ) which can be done by
the following :
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Proof for the function type 2/3

∆ =
∑

g :
∏

a′:A′ B
′ a′

∏
a:A
a′:A′

aε:JAK a a′

JBK (f a) (g a′)

'
∑

g :
∏

a′:A′ B
′ a′

∏
a′:A′

∏
a:A

aε:JAK a a′

JBK (f a) (g a′)

'
∑

g :
∏

a′:A′ B
′ a′

∏
a′:A′

∏
z:
∑

a:AJAK a a′

JBK (f z .1) (g a′)

'
∑

g :
∏

a′:A′ B
′ a′

∏
a′:A′

JBK (f ↑ a′) (g a′)

'
∑

g :
∏

a′:A′ B
′ a′

∏
a′:A′

↑ (f ↑ a′) = (g a′)

'
∑

g :
∏

a′:A′ B
′ a′

(λ(a′ : A′). ↑ (f ↑ a′) = g
49/66



Proof for the function type 3/3

The definition being symetric we have :

(FRΠ RA RB)op ' FRΠ RAop (λa, a′, aε → (JBK a a′ aε)op)

Thanks to this result it suffices to prove isContr(FRΠ) to
prove isContr(FRop

Π ).

Indeed, by definition RAop and (λa, a′, aε → (JBK a a′ aε)op)

have the same properties as RA and RB .

Thus the result.
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Univalent Relational Parametricity

The Abstraction Theorem for Parametric
Inductive Types



How to add Inductive type : Typing rules

Adding inductive types is adding both type constructors and
term constructors. For instance :

list A : Ui
| [] : list A

| :: : A→ list A→ list A

Given A,A′ : Un such that A ./ A′ then

[list A] : JAK (list A) (list A′)

ie [list A] : (list A) ./ (list A′)

ie [list A] :
∑

R:list A→list A′→Ui

isFun(R)× isFun(Rop)
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How to add Inductive type : Constructors

Then we nedd to do so for the constructors :
In the degenerate case, one need to prove

[ [] ] : Jlist AK [] []

In the recursive case a, l , a′, l ′ such that a ≈ a′ and l ≈ l ′ prove

[a :: l ] : Jlist AK (a :: l) (a′ :: l ′)
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Find a relation

First we need to define a relation over the list given
RA : A ≈ A′ :

FR list RA l l ′ := match l , l ′ with

| [], [] =⇒ >

| a :: l , a′ :: l ′ =⇒
∑

Xa:a≈a′
FR list RA l l ′

| _, _ =⇒ ⊥
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Proving isFun(FR list) 1/2

By the previous remarks it suffices to show isFun(FR list) to
get isFun(FRop

list).

First, one need to do an induction on l then prove :

isContr(
∑

l ′:list A′

FR list [] l ′) isContr(
∑

l ′:list A′

FR list (a :: l) l ′)

The key is to reason on the entire sum rather than on the
inside∑

l ′:list A′

FR_list RA [] l ′ ' FR list RA [] [] ≡ >
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Proving isFun(FR_list) 2/2

Then for the induction, one gets :

∆ :=
∑

l ′:list A′

FR_list RA (a :: l) l ′

'
∑
a′:A′

∑
l ′:list A′

FR_list RA (a :: l) (a′ :: l ′)

≡
∑
a′:A′

∑
l ′:list A′

∑
Xa:a≈a′

FR_list RA l l ′

'
∑
a′:A′

∑
Xa:a≈a′

∑
l ′:list A′

FR_list RA l l ′

'
∑
a′:A′

a ≈ a′

55/66



Proving the result on the constructors

We need to give :

[ [] ] : Jlist AK [] []

[ [] ] : >

And in the recursive case, given a, l , a′, l ′ such that a ≈ a′ and
l ≈ l ′ give

[a :: l ] : Jlist AK (a :: l) (a′ :: l ′)

[a :: l ] :
∑

Xa:a≈a′
l ≈ l ′

So verifiying the abstract theorem trivial fr constructors
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Univalent Relational Parametricity

The Abstraction Theorem For Indexed
Inductive Types



The special case of equality 1/2

To prove the results for all indexed inductive types, we are
going to treat first the equality

eq A x : A→ Un :=

| refl : eq x x

Then given A,A′ : Un, x , y : A such that x ′, y ′ : A′ such that
RA : A ./ A′, Xx : x ≈ x ′, Xy : y ≈ y ′ :

FReq (p : x = x ′) (q : y = y ′) :=

transportλx
′→x≈x ′ q Xx = transportλx→x≈y ′

p−1 Xy
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Then given A,A′ : Un, x , y : A such that x ′, y ′ : A′ such that
RA : A ./ A′, Xx : x ≈ x ′, Xy : y ≈ y ′ :
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The special case of equality 2/2

Then we nedd to prove :

isContr(
∑

q:y=y ′

transportλx
′→x≈x ′ q Xx = transportλx→x≈y ′

p−1 Xy)

By path induction on p then we have the following :∑
q:y=y ′

transportλx
′→x≈x ′ q Xx = Xy ' (y ,Xx) = (y ′,Xy)

Then it suffices to prove isContr(
∑

y :A RA x y), which is the
case by definition of RA.

We also need to give [refl ] : JeqK refl refl ie a proof of Xx = Yy

which is possible because both are proof RA x x
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All the others inductive types 1/2

Let’s use the vectors as an example :

vec A : N→ Un
| nil : vec A 0

| cons :
∏
k:N

A→ vec A k → vec A (k + 1)

They can be turn in an non-indexed inductive type :

vecF A k : Un
| nilF : 0 = k → vecF A k

| consF :
∏
l :N

S l = n→ A→ vecF A l → vecF A n
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All the others inductive types 2/2

Then vecF it a regular parametrise inductive types and verifies
parametricity.

Then we can define :

FRF
vec v v ′ := FRvecF (↑F v) (↑F v ′)

From this it is easily to prove that FRvec is paraemtric
Pus one can prove that FRvec v v ′ ' FRF

vec v v ′ so the
constructors are trivial to do.

Hence we have proved that Parametricity goes trough the
vectors and so for general indexed inductive types.
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Conlusion



Conclusion 1/2

• An idea of what is parametricity and its history

• Parametricity (made heterogenous) is not enough for
automatic transport, it fails on the computation problem
• Univalece is not enough either, failing on the anticipation

problem
• A cubical setting enables to transport proof but not

automatically
• By mixing Parametricity and Univalence one can

automatically transport proof !
• However, for it to work, they must be made carefully
• Then it is possible to automatically transport proof for

CCω + parametrise inductive types + indexed inductive
types. So basically for Coq !
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Conclusion 2/2

Some limitations with this approach :

• For the data refinement problem, one need the data to be
equivalent

• This approach doesn’t seem to be automatisable for
HIT... or even work

• This means no quotient which annoying for the data
refinement problem
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