Introduction and Comparison of Different Approaches to Initial Semantics

<u>Thomas Lamiaux</u>, Benedikt Ahrens DutchCat, Utrecht, March 2023

- 1. Introduction to initial semantics
 - Motivations
 - Principles of initial semantics
- 2. Unifying the different traditions
 - Different traditions of initial semantics
 - Different Signatures
 - Our proposition

Introduction to Initial Semantics

Introduction to Initial Semantics

Motivations

Issues with high-order languages				

Issues with high-order languages

• Semantic is partially independent of names: $\lambda x. x$ vs $\lambda y. y$

Issues with high-order languages

- Semantic is partially independent of names: $\lambda x. x$ vs $\lambda y. y$
- Shadowing of variables: $\lambda \mathbf{x} \cdot \mathbf{x} (\lambda \mathbf{x} \cdot \mathbf{x} + \mathbf{2})$

Issues with high-order languages

- Semantic is partially independent of names: $\lambda x. x$ vs $\lambda y. y$
- Shadowing of variables: $\lambda \mathbf{x} \cdot \mathbf{x} (\lambda \mathbf{x} \cdot \mathbf{x} + 2)$

Issues with high-order languages

- Semantic is partially independent of names: $\lambda x. x \text{ vs } \lambda y. y$
- Shadowing of variables: $\lambda \mathbf{x} \cdot \mathbf{x} (\lambda \mathbf{x} \cdot \mathbf{x} + 2)$
- Capture of variable: $(\lambda x. \lambda y. (x + y))(y + y) \xrightarrow{\rightarrow} \lambda y. (y + y + y)$

Issues with high-order languages

- Semantic is partially independent of names: $\lambda x. x \text{ vs } \lambda y. y$
- Shadowing of variables: $\lambda \mathbf{x} \cdot \mathbf{x} (\lambda \mathbf{x} \cdot \mathbf{x} + 2)$
- Capture of variable: $(\lambda x. \lambda y. (x + y))(y + y) \xrightarrow{\rightarrow} \lambda y. (y + y + y)$

It implies working up to α -equivalence. Not that easy !

Issues with high-order languages

- Semantic is partially independent of names: $\lambda x. x \text{ vs } \lambda y. y$
- Shadowing of variables: $\lambda \mathbf{x} \cdot \mathbf{x} (\lambda \mathbf{x} \cdot \mathbf{x} + 2)$
- Capture of variable: $(\lambda x. \lambda y. (x + y))(y + y) \xrightarrow{\rightarrow} \lambda y. (y + y + y)$

It implies working up to α -equivalence. Not that easy !

Objectives of Initial Semantics

Issues with high-order languages

- Semantic is partially independent of names: $\lambda x. x \text{ vs } \lambda y. y$
- Shadowing of variables: $\lambda \mathbf{x} \cdot \mathbf{x} (\lambda \mathbf{x} \cdot \mathbf{x} + 2)$
- Capture of variable: $(\lambda x. \lambda y. (x + y))(y + y) \rightarrow \lambda y. (y + y + y)$

It implies working up to α -equivalence. Not that easy !

Objectives of Initial Semantics

Provide a mathematical framework to:

- Deal with variable binding and $\alpha\text{-equivalence}$

Issues with high-order languages

- Semantic is partially independent of names: $\lambda x. x \text{ vs } \lambda y. y$
- Shadowing of variables: $\lambda \mathbf{x} \cdot \mathbf{x} (\lambda \mathbf{x} \cdot \mathbf{x} + 2)$
- Capture of variable: $(\lambda x. \lambda y. (x + y))(y + y) \rightarrow \lambda y. (y + y + y)$

It implies working up to α -equivalence. Not that easy !

Objectives of Initial Semantics

- Deal with variable binding and $\alpha\text{-equivalence}$
- Have a recursion principle for the language

Issues with high-order languages

- Semantic is partially independent of names: $\lambda x. x \text{ vs } \lambda y. y$
- Shadowing of variables: $\lambda \mathbf{x} \cdot \mathbf{x} (\lambda \mathbf{x} \cdot \mathbf{x} + 2)$
- Capture of variable: $(\lambda x. \lambda y. (x + y))(y + y) \rightarrow \lambda y. (y + y + y)$

It implies working up to α -equivalence. Not that easy !

Objectives of Initial Semantics

- Deal with variable binding and $\alpha\text{-equivalence}$
- Have a recursion principle for the language
- Characterize the language with its substitution

Issues with high-order languages

- Semantic is partially independent of names: $\lambda x. x \text{ vs } \lambda y. y$
- Shadowing of variables: $\lambda \mathbf{x} \cdot \mathbf{x} (\lambda \mathbf{x} \cdot \mathbf{x} + 2)$
- Capture of variable: $(\lambda x. \lambda y. (x + y))(y + y) \xrightarrow{\rightarrow} \lambda y. (y + y + y)$

It implies working up to α -equivalence. Not that easy !

Objectives of Initial Semantics

- Deal with variable binding and $\alpha\text{-equivalence}$
- Have a recursion principle for the language
- Characterize the language with its substitution
- Characterize the commutation of constructors and substitution

Introduction to Initial Semantics

Principles of Initial Semantics

Variable Binding and Renaming

The lambda calculus is presheaf

The lambda calculus is a functor $\Lambda:\operatorname{Set}\to\operatorname{Set}:$

Variable Binding and Renaming

The lambda calculus is presheaf

The lambda calculus is a functor $\Lambda:\operatorname{Set}\to\operatorname{Set}:$

• X : Set are variable names, $\Lambda(X)$: Set the lambda terms over it.

Variable Binding and Renaming

The lambda calculus is presheaf

The lambda calculus is a functor $\Lambda : Set \rightarrow Set$:

- X : Set are variable names, $\Lambda(X)$: Set the lambda terms over it.
- Given $f : X \to Y$, $\Lambda(f) : \Lambda(X) \to \Lambda(Y)$ is variable renaming.

The lambda calculus is presheaf

The lambda calculus is a functor $\Lambda:\operatorname{Set}\to\operatorname{Set}:$

- X : Set are variable names, $\Lambda(X)$: Set the lambda terms over it.
- Given $f: X \to Y$, $\Lambda(f): \Lambda(X) \to \Lambda(Y)$ is variable renaming.

Constructors are natural transformations

Constructors, including variable binding, are natural transformation:

The lambda calculus is presheaf

The lambda calculus is a functor $\Lambda:\operatorname{Set}\to\operatorname{Set}:$

- X : Set are variable names, $\Lambda(X)$: Set the lambda terms over it.
- Given $f: X \to Y$, $\Lambda(f): \Lambda(X) \to \Lambda(Y)$ is variable renaming.

Constructors are natural transformations

Constructors, including variable binding, are natural transformation:

• Variable binding is $\operatorname{abs}_X : \Lambda(X+1) \to \Lambda(X)$

The lambda calculus is presheaf

The lambda calculus is a functor $\Lambda:\operatorname{Set}\to\operatorname{Set}:$

- X : Set are variable names, $\Lambda(X)$: Set the lambda terms over it.
- Given $f: X \to Y$, $\Lambda(f): \Lambda(X) \to \Lambda(Y)$ is variable renaming.

Constructors are natural transformations

Constructors, including variable binding, are natural transformation:

- Variable binding is $\operatorname{abs}_X : \Lambda(X+1) \to \Lambda(X)$
- Naturality specify commutation with renaming:

$$\begin{array}{c} \Lambda(X+1) \xrightarrow{\operatorname{abs}_X} \Lambda(X) \\ \Lambda(f+1) \downarrow \qquad \qquad \qquad \downarrow \Lambda(f) \\ \Lambda(Y+1) \xrightarrow{\operatorname{abs}_Y} \Lambda(X) \end{array}$$

A Recursion Principle

The lambda calculus is an initial algebra

• The lambda calculus is an **initial** algebra on Set \rightarrow Set for the functor $\mathcal{H} : F \mapsto \mathrm{Id} + F \times F + F \circ (X \mapsto X + 1)$:

$$\begin{array}{c|c} X + \Lambda(X) \times \Lambda(X) + \Lambda(X+1) & \xrightarrow{\operatorname{var+app+abs}} & \Lambda(X) \\ & & & \\ & & \\ h + \Lambda(h) \times \Lambda(h) + \Lambda(h+1) \\ & & \\ & & \\ & & \\ X + B(X) \times B(X) + B(X+1) & \xrightarrow{\operatorname{var+app+abs}} & B \end{array}$$

A Recursion Principle

The lambda calculus is an initial algebra

• The lambda calculus is an **initial** algebra on Set \rightarrow Set for the functor $\mathcal{H} : F \mapsto \mathrm{Id} + F \times F + F \circ (X \mapsto X + 1)$:

$$\begin{array}{c|c} X + \Lambda(X) \times \Lambda(X) + \Lambda(X+1) & \xrightarrow{\operatorname{var+app+abs}} & \Lambda(X) \\ & & & & \\ h + \Lambda(h) \times \Lambda(h) + \Lambda(h+1) \\ & & & & \\ & & & \\ X + B(X) \times B(X) + B(X+1) & \xrightarrow{b + b' + b''} & B \end{array}$$

A recursion principle

• Building an algebra is exactly building a map to B by recursion

The Subtitution Structure

The lamda calculus is a Monad

 \bullet The lambda calculus forms a monad on Set for η the variable constructor and σ the simultaneous substitution.

The Subtitution Structure

The lamda calculus is a Monad

• The lambda calculus forms a monad on Set for η the variable constructor and σ the simultaneous substitution.

Monad on a category \mathcal{C}

A monad is a triple (T, η, σ) where:

- $T: \mathcal{C} \to \mathcal{C}$ is a functor
- $\eta_X : X \to T(X)$ and $\sigma_{X,Y} : (X \to T(Y)) \to (T(X) \to T(Y))$ are natural transformations verifying:

Subtitution of Constructors

Given $f : X \to \Lambda(Y)$ how to model commutation of constructors with substitution $\sigma(f) : T(X) \to T(Y)$ for

Subtitution of Constructors

Given $f : X \to \Lambda(Y)$ how to model commutation of constructors with substitution $\sigma(f) : T(X) \to T(Y)$ for

Some solution

- Using modules
- Using a notion of strength

The General Method

- 1. Define a notion of signatures
- 2. Build a category of models for signatures:
 - An algebra structure on a presheaf category
 - With a mathematical structure for substitution
 - And a structure expressing commutation of constructors with substitution
- 3. Identity a class of signatures that always have an initial model

Unifying the Different Traditions

Unifying the Different Traditions

Different Traditions to Initial Semantics

Some basic papers on the subject:

- **1999** Altenkirch and Reus, "Monadic Presentations of Lambda Terms Using Generalized Inductive Types"
- 1999 Fiore, Plotkin, and Turi, "Abstract Syntax and Variable Binding"
- 2003 Matthes and Uustalu, "Substitution in non-wellfounded syntax with variable binding"
- 2007 Hirschowitz and Maggesi, "Modules over Monads and Linearity"
- 2010 Zsido, "Typed Abstract Syntax"
- 2010 Hirschowitz and Maggesi, "Modules over monads and initial semantics"
- 2012 Hirschowitz and Maggesi, "Initial Semantics for Strengthened Signatures"
- 2015 Ahrens and Matthes, "Heterogeneous Substitution Systems Revisited"
- 2018 Ahrens et al., "High-Level Signatures and Initial Semantics"

Traditions of Untyped Initial Semantics

Year	Signatures	Category	Model	Initiality	Proofs	
1999	Algebraic	$\mathrm{Set}\to\mathrm{Set}$	Monads	No	Yes	
1999	Algebraic	$\mathbb{F} \to \operatorname{Set}$	${\sf Monoids} + {\sf Strength}$	Yes	No	
2004	Strength	$\mathcal{C} \to \mathcal{C}$	Hss / Monads	No / No	Yes	
2007	Algebraic	$Set \to Set$	Monads + Module	Yes	No	
2010	Comparing models of $\mathbb{F} \to \text{Set} \text{ vs Set} \to \text{Set}$					
2010	Algebraic	$Set\toSet$	Monads + Module	Yes	Yes	
2012	Strength	$Set \to Set$	Monads + Module	Yes	No	
2015	Strength	$\mathcal{C} \to \mathcal{C}$	Hss / Monads	Yes / No	Yes	
2018	Presentable	$Set \to Set$	Monads + Module	Yes	Yes	

Traditions of Untyped Initial Semantics

Year	Signatures	Category	Model	Initiality	Proofs	
1999	Algebraic	$Set\toSet$	Monads	No	Yes	
1999	Algebraic	$\mathbb{F} \to \operatorname{Set}$	${\sf Monoids} + {\sf Strength}$	Yes	No	
2004	Strength	$\mathcal{C} \to \mathcal{C}$	Hss / Monads	No / No	Yes	
2007	Algebraic	$Set\toSet$	Monads + Module	Yes	No	
2010	Comparing models of $\mathbb{F} \to \text{Set} \text{ vs Set} \to \text{Set}$					
2010	Algebraic	$Set\toSet$	Monads + Module	Yes	Yes	
2012	Strength	$Set \to Set$	Monads + Module	Yes	No	
2015	Strength	$\mathcal{C} \to \mathcal{C}$	Hss / Monads	Yes / No	Yes	
2018	Presentable	$Set\toSet$	Monads + Module	Yes	Yes	

Challenges

• Different notions of Signatures, Categories and Models !

Traditions of Untyped Initial Semantics

Year	Signatures	Category	Model	Initiality	Proofs	
1999	Algebraic	$Set\toSet$	Monads	No	Yes	
1999	Algebraic	$\mathbb{F} \to \operatorname{Set}$	${\sf Monoids} + {\sf Strength}$	Yes	No	
2004	Strength	$\mathcal{C} \to \mathcal{C}$	Hss / Monads	No / No	Yes	
2007	Algebraic	$Set\toSet$	Monads + Module	Yes	No	
2010	Comparing models of $\mathbb{F} \to \text{Set} \text{ vs Set} \to \text{Set}$					
2010	Algebraic	$Set\toSet$	Monads + Module	Yes	Yes	
2012	Strength	$Set \to Set$	Monads + Module	Yes	No	
2015	Strength	$\mathcal{C} \to \mathcal{C}$	Hss / Monads	Yes / No	Yes	
2018	Presentable	$Set\toSet$	Monads + Module	Yes	Yes	

Challenges

- Different notions of Signatures, Categories and Models !
- Often no initiality or no proofs !

Unifying the Different Traditions

Different Signatures

Algebraic Signatures

Algebraic Signatures

- Elementary signatures are lists of N, $[n_1,...,n_k]$ also written as $\Theta^{(n_1)}\times ...\times \Theta^{(n_k)}$
- Algebraic Signatures are list / coproduct of elementary signatures.

Algebraic Signatures

Algebraic Signatures

- Elementary signatures are lists of N, $[n_1,...,n_k]$ also written as $\Theta^{(n_1)}\times ...\times \Theta^{(n_k)}$
- Algebraic Signatures are list / coproduct of elementary signatures.

Examples

- app can be seen as [0,0] or $\Theta \times \Theta$
- abs can be seen as [1] or $\Theta^{(1)}$
- The lambda calculus is [[0,0],[1]] or $\Theta\times\Theta+\Theta^{(1)}$

Algebraic Signatures

Algebraic Signatures

- Elementary signatures are lists of N, $[n_1,...,n_k]$ also written as $\Theta^{(n_1)}\times ...\times \Theta^{(n_k)}$
- Algebraic Signatures are list / coproduct of elementary signatures.

Examples

- app can be seen as [0,0] or $\Theta \times \Theta$
- abs can be seen as [1] or $\Theta^{(1)}$
- The lambda calculus is [[0,0],[1]] or $\Theta\times\Theta+\Theta^{(1)}$

Typed ?

• Those signatures do not raise as such to the typed case

Signatures with Strength

Signatures with strength are tuples (H, θ) such that :

- $H : [Set, Set] \rightarrow [Set, Set]$
- Θ is natural transformation, such that for all $A, B : Set \to Set$ and $b : Id \Rightarrow B$:

$$\theta_{A,b}: H(A) \circ B \to H(A \circ B)$$

Signatures with Strength

Signatures with strength are tuples (H, θ) such that :

- $\bullet \ H: [\operatorname{Set}, \operatorname{Set}] \to [\operatorname{Set}, \operatorname{Set}]$
- Θ is natural transformation, such that for all $A, B : Set \to Set$ and $b : Id \Rightarrow B$:

$$\theta_{A,b}: H(A) \circ B \to H(A \circ B)$$

Examples

• Algebraic signatures "are" signatures with strength

Signatures with Strength

Signatures with strength are tuples (H, θ) such that :

- $\bullet \ H: [\operatorname{Set}, \operatorname{Set}] \to [\operatorname{Set}, \operatorname{Set}]$
- Θ is natural transformation, such that for all $A, B : Set \to Set$ and $b : Id \Rightarrow B$:

$$\theta_{A,b}: H(A) \circ B \to H(A \circ B)$$

Examples

- Algebraic signatures "are" signatures with strength
- $T \mapsto T \circ T$ is a signatures with strength

Presentable Signatures

• Presentable signatures are signatures Σ such that there is an algebraic signatures Υ and an epimorphism of signatures:

$$\Upsilon \twoheadrightarrow \Sigma$$

Presentable Signatures

• Presentable signatures are signatures Σ such that there is an algebraic signatures Υ and an epimorphism of signatures:

$$\Upsilon \twoheadrightarrow \Sigma$$

Examples

- Adding a commutative binary operator
- Adding a coherent fixpoint operator

Unifying the Different Traditions

Our Proposition

Monoidal Category

Work directly on Monoidal Category:

• $\mathbb{F} \to Set$, Set $\to Set$, $\mathcal{C} \to \mathcal{C}$

Monoidal Category

Work directly on Monoidal Category:

• $\mathbb{F} \to Set$, Set $\to Set$, $\mathcal{C} \to \mathcal{C}$

Connecting Signatures

- Define general notion of signatures
- Define substitution with strength
- Show that signatures with strength are signatures
- Show that algebraic signatures are a subclass of signatures with strength.

Building Models

- Define monoids
- Define modules over monoids
- Define models as monoid + module morphism

Building Models

- Define monoids
- Define modules over monoids
- Define models as monoid + module morphism

Connecting Models

- Show that Monoid + Stength = Monads + Module
- Show that there is an initial hss
- We can use the hss to build a model structure
- We can prove this model is initial

Zsido phd

• 2010, Zsido, "Typed Abstract Syntax"

Zsido phd

• 2010, Zsido, "Typed Abstract Syntax"

Zsido Theorem

• For algebraic signatures, we can build the initial model of $\mathbb{F}\to$ Set and Set \to Set and vice versa

Year	Signatures	Category	Model	Initiality	Proofs	
1999	Algebraic	$\operatorname{Set} \to \operatorname{Set}$	Monads	No	Yes	
1999	Algebraic	$\mathbb{F} \to \operatorname{Set}$	${\sf Monoids} + {\sf Strength}$	Yes	No	
2004	Strength	$\mathcal{C} \to \mathcal{C}$	Hss / Monads	No / No	Yes	
2007	Algebraic	$\operatorname{Set} \to \operatorname{Set}$	Monads + Module	Yes	No	
2010	Comparing models of $\mathbb{F} \to \text{Set} \text{ vs Set} \to \text{Set}$					
2010	Algebraic	$\mathrm{Set}\to\mathrm{Set}$	Monads + Module	Yes	Yes	
2012	Strength	$\operatorname{Set} \to \operatorname{Set}$	Monads + Module	Yes	No	
2015	Strength	$\mathcal{C} \to \mathcal{C}$	Hss / Monads	Yes / No	Yes	
2018	Presentable	$\operatorname{Set} \to \operatorname{Set}$	Monads + Module	Yes	Yes	

Some general goals

- Write it down, explain it and making it accessible
- Extend Zsido's phd for signatures with strength
- Look at presentable signatures
- Look at signatures with equations
- Adding reduction rules ?
- Simply typed languages ?

Let's eat !