
Introduction and Comparison of Different

Approaches to Initial Semantics

Thomas Lamiaux, Benedikt Ahrens

DutchCat, Utrecht, March 2023

1/19



Table of contents

1. Introduction to initial semantics

§ Motivations

§ Principles of initial semantics

2. Unifying the different traditions

§ Different traditions of initial semantics

§ Different Signatures

§ Our proposition

2/19



Introduction to Initial Semantics



Introduction to Initial Semantics

Motivations



The Objectives of Initial Semantics

Issues with high-order languages

‚ Semantic is partially independent of names: λx . x vs λy . y

‚ Shadowing of variables:

‚ Capture of variable: pλx . λy . px ` yqqpy ` yq Û λy . py ` y ` yq

It implies working up to α-equivalence. Not that easy !

Objectives of Initial Semantics

Provide a mathematical framework to:

‚ Deal with variable binding and α-equivalence

‚ Have a recursion principle for the language

‚ Characterize the language with its substitution

‚ Characterize the commutation of constructors and substitution

3/19



The Objectives of Initial Semantics

Issues with high-order languages

‚ Semantic is partially independent of names: λx . x vs λy . y

‚ Shadowing of variables:

‚ Capture of variable: pλx . λy . px ` yqqpy ` yq Û λy . py ` y ` yq

It implies working up to α-equivalence. Not that easy !

Objectives of Initial Semantics

Provide a mathematical framework to:

‚ Deal with variable binding and α-equivalence

‚ Have a recursion principle for the language

‚ Characterize the language with its substitution

‚ Characterize the commutation of constructors and substitution

3/19



The Objectives of Initial Semantics

Issues with high-order languages

‚ Semantic is partially independent of names: λx . x vs λy . y

‚ Shadowing of variables: λx. xpλx. x ` 2q

‚ Capture of variable: pλx . λy . px ` yqqpy ` yq Û λy . py ` y ` yq

It implies working up to α-equivalence. Not that easy !

Objectives of Initial Semantics

Provide a mathematical framework to:

‚ Deal with variable binding and α-equivalence

‚ Have a recursion principle for the language

‚ Characterize the language with its substitution

‚ Characterize the commutation of constructors and substitution

3/19



The Objectives of Initial Semantics

Issues with high-order languages

‚ Semantic is partially independent of names: λx . x vs λy . y

‚ Shadowing of variables:λx. xpλx. x ` 2q

‚ Capture of variable: pλx . λy . px ` yqqpy ` yq Û λy . py ` y ` yq

It implies working up to α-equivalence. Not that easy !

Objectives of Initial Semantics

Provide a mathematical framework to:

‚ Deal with variable binding and α-equivalence

‚ Have a recursion principle for the language

‚ Characterize the language with its substitution

‚ Characterize the commutation of constructors and substitution

3/19



The Objectives of Initial Semantics

Issues with high-order languages

‚ Semantic is partially independent of names: λx . x vs λy . y

‚ Shadowing of variables:λx. xpλx. x ` 2q

‚ Capture of variable: pλx . λy . px ` yqqpy ` yq Û λy . py ` y ` yq

It implies working up to α-equivalence. Not that easy !

Objectives of Initial Semantics

Provide a mathematical framework to:

‚ Deal with variable binding and α-equivalence

‚ Have a recursion principle for the language

‚ Characterize the language with its substitution

‚ Characterize the commutation of constructors and substitution

3/19



The Objectives of Initial Semantics

Issues with high-order languages

‚ Semantic is partially independent of names: λx . x vs λy . y

‚ Shadowing of variables:λx. xpλx. x ` 2q

‚ Capture of variable: pλx . λy . px ` yqqpy ` yq Û λy . py ` y ` yq

It implies working up to α-equivalence. Not that easy !

Objectives of Initial Semantics

Provide a mathematical framework to:

‚ Deal with variable binding and α-equivalence

‚ Have a recursion principle for the language

‚ Characterize the language with its substitution

‚ Characterize the commutation of constructors and substitution

3/19



The Objectives of Initial Semantics

Issues with high-order languages

‚ Semantic is partially independent of names: λx . x vs λy . y

‚ Shadowing of variables:λx. xpλx. x ` 2q

‚ Capture of variable: pλx . λy . px ` yqqpy ` yq Û λy . py ` y ` yq

It implies working up to α-equivalence. Not that easy !

Objectives of Initial Semantics

Provide a mathematical framework to:

‚ Deal with variable binding and α-equivalence

‚ Have a recursion principle for the language

‚ Characterize the language with its substitution

‚ Characterize the commutation of constructors and substitution

3/19



The Objectives of Initial Semantics

Issues with high-order languages

‚ Semantic is partially independent of names: λx . x vs λy . y

‚ Shadowing of variables:λx. xpλx. x ` 2q

‚ Capture of variable: pλx . λy . px ` yqqpy ` yq Û λy . py ` y ` yq

It implies working up to α-equivalence. Not that easy !

Objectives of Initial Semantics

Provide a mathematical framework to:

‚ Deal with variable binding and α-equivalence

‚ Have a recursion principle for the language

‚ Characterize the language with its substitution

‚ Characterize the commutation of constructors and substitution

3/19



The Objectives of Initial Semantics

Issues with high-order languages

‚ Semantic is partially independent of names: λx . x vs λy . y

‚ Shadowing of variables:λx. xpλx. x ` 2q

‚ Capture of variable: pλx . λy . px ` yqqpy ` yq Û λy . py ` y ` yq

It implies working up to α-equivalence. Not that easy !

Objectives of Initial Semantics

Provide a mathematical framework to:

‚ Deal with variable binding and α-equivalence

‚ Have a recursion principle for the language

‚ Characterize the language with its substitution

‚ Characterize the commutation of constructors and substitution

3/19



The Objectives of Initial Semantics

Issues with high-order languages

‚ Semantic is partially independent of names: λx . x vs λy . y

‚ Shadowing of variables:λx. xpλx. x ` 2q

‚ Capture of variable: pλx . λy . px ` yqqpy ` yq Û λy . py ` y ` yq

It implies working up to α-equivalence. Not that easy !

Objectives of Initial Semantics

Provide a mathematical framework to:

‚ Deal with variable binding and α-equivalence

‚ Have a recursion principle for the language

‚ Characterize the language with its substitution

‚ Characterize the commutation of constructors and substitution

3/19



The Objectives of Initial Semantics

Issues with high-order languages

‚ Semantic is partially independent of names: λx . x vs λy . y

‚ Shadowing of variables:λx. xpλx. x ` 2q

‚ Capture of variable: pλx . λy . px ` yqqpy ` yq Û λy . py ` y ` yq

It implies working up to α-equivalence. Not that easy !

Objectives of Initial Semantics

Provide a mathematical framework to:

‚ Deal with variable binding and α-equivalence

‚ Have a recursion principle for the language

‚ Characterize the language with its substitution

‚ Characterize the commutation of constructors and substitution

3/19



Introduction to Initial Semantics

Principles of Initial Semantics



Variable Binding and Renaming

The lambda calculus is presheaf

The lambda calculus is a functor Λ : Set Ñ Set:

‚ X : Set are variable names, ΛpX q : Set the lambda terms over it.

‚ Given f : X Ñ Y , Λpf q : ΛpX q Ñ ΛpY q is variable renaming.

Constructors are natural transformations

Constructors, including variable binding, are natural transformation:

‚ Variable binding is absX : ΛpX ` 1q Ñ ΛpX q

‚ Naturality specify commutation with renaming:

ΛpX ` 1q ΛpX q

ΛpY ` 1q ΛpX q

absX

Λpf `1q Λpf q

absY

4/19



Variable Binding and Renaming

The lambda calculus is presheaf

The lambda calculus is a functor Λ : Set Ñ Set:

‚ X : Set are variable names, ΛpX q : Set the lambda terms over it.

‚ Given f : X Ñ Y , Λpf q : ΛpX q Ñ ΛpY q is variable renaming.

Constructors are natural transformations

Constructors, including variable binding, are natural transformation:

‚ Variable binding is absX : ΛpX ` 1q Ñ ΛpX q

‚ Naturality specify commutation with renaming:

ΛpX ` 1q ΛpX q

ΛpY ` 1q ΛpX q

absX

Λpf `1q Λpf q

absY

4/19



Variable Binding and Renaming

The lambda calculus is presheaf

The lambda calculus is a functor Λ : Set Ñ Set:

‚ X : Set are variable names, ΛpX q : Set the lambda terms over it.

‚ Given f : X Ñ Y , Λpf q : ΛpX q Ñ ΛpY q is variable renaming.

Constructors are natural transformations

Constructors, including variable binding, are natural transformation:

‚ Variable binding is absX : ΛpX ` 1q Ñ ΛpX q

‚ Naturality specify commutation with renaming:

ΛpX ` 1q ΛpX q

ΛpY ` 1q ΛpX q

absX

Λpf `1q Λpf q

absY

4/19



Variable Binding and Renaming

The lambda calculus is presheaf

The lambda calculus is a functor Λ : Set Ñ Set:

‚ X : Set are variable names, ΛpX q : Set the lambda terms over it.

‚ Given f : X Ñ Y , Λpf q : ΛpX q Ñ ΛpY q is variable renaming.

Constructors are natural transformations

Constructors, including variable binding, are natural transformation:

‚ Variable binding is absX : ΛpX ` 1q Ñ ΛpX q

‚ Naturality specify commutation with renaming:

ΛpX ` 1q ΛpX q

ΛpY ` 1q ΛpX q

absX

Λpf `1q Λpf q

absY

4/19



Variable Binding and Renaming

The lambda calculus is presheaf

The lambda calculus is a functor Λ : Set Ñ Set:

‚ X : Set are variable names, ΛpX q : Set the lambda terms over it.

‚ Given f : X Ñ Y , Λpf q : ΛpX q Ñ ΛpY q is variable renaming.

Constructors are natural transformations

Constructors, including variable binding, are natural transformation:

‚ Variable binding is absX : ΛpX ` 1q Ñ ΛpX q

‚ Naturality specify commutation with renaming:

ΛpX ` 1q ΛpX q

ΛpY ` 1q ΛpX q

absX

Λpf `1q Λpf q

absY

4/19



Variable Binding and Renaming

The lambda calculus is presheaf

The lambda calculus is a functor Λ : Set Ñ Set:

‚ X : Set are variable names, ΛpX q : Set the lambda terms over it.

‚ Given f : X Ñ Y , Λpf q : ΛpX q Ñ ΛpY q is variable renaming.

Constructors are natural transformations

Constructors, including variable binding, are natural transformation:

‚ Variable binding is absX : ΛpX ` 1q Ñ ΛpX q

‚ Naturality specify commutation with renaming:

ΛpX ` 1q ΛpX q

ΛpY ` 1q ΛpX q

absX

Λpf `1q Λpf q

absY

4/19



A Recursion Principle

The lambda calculus is an initial algebra

‚ The lambda calculus is an initial algebra on Set Ñ Set for the

functor H : F ÞÑ Id ` F ˆ F ` F ˝ pX ÞÑ X ` 1q:

X ` ΛpX q ˆ ΛpX q ` ΛpX ` 1q ΛpX q

X ` BpX q ˆ BpX q ` BpX ` 1q B

var`app`abs

h`ΛphqˆΛphq`Λph`1q D!h

b`b1
`b2

A recursion principle

‚ Building an algebra is exactly building a map to B by recursion

5/19



A Recursion Principle

The lambda calculus is an initial algebra

‚ The lambda calculus is an initial algebra on Set Ñ Set for the

functor H : F ÞÑ Id ` F ˆ F ` F ˝ pX ÞÑ X ` 1q:

X ` ΛpX q ˆ ΛpX q ` ΛpX ` 1q ΛpX q

X ` BpX q ˆ BpX q ` BpX ` 1q B

var`app`abs

h`ΛphqˆΛphq`Λph`1q D!h

b`b1
`b2

A recursion principle

‚ Building an algebra is exactly building a map to B by recursion

5/19



The Subtitution Structure

The lamda calculus is a Monad

‚ The lambda calculus forms a monad on Set for η the variable

constructor and σ the simultaneous substitution.

Monad on a category C

A monad is a triple pT , η, σq where:

‚ T : C Ñ C is a functor

‚ ηX : X Ñ T pX q and σX ,Y : pX Ñ T pY qq Ñ pT pX q Ñ T pY qq

are natural transformations verifying:

X T pX q

T pY q

ηX

f
σpf q

T pX q

T pX qid

σpηX q T pX q T pY q

T pZ q

σpf q

σpσpgq˝f q
σpgq

6/19



The Subtitution Structure

The lamda calculus is a Monad

‚ The lambda calculus forms a monad on Set for η the variable

constructor and σ the simultaneous substitution.

Monad on a category C

A monad is a triple pT , η, σq where:

‚ T : C Ñ C is a functor

‚ ηX : X Ñ T pX q and σX ,Y : pX Ñ T pY qq Ñ pT pX q Ñ T pY qq

are natural transformations verifying:

X T pX q

T pY q

ηX

f
σpf q

T pX q

T pX qid

σpηX q T pX q T pY q

T pZ q

σpf q

σpσpgq˝f q
σpgq

6/19



Model Substitution of Constructors

Subtitution of Constructors

Given f : X Ñ ΛpY q how to model commutation of constructors

with substitution σpf q : T pX q Ñ T pY q for

ΛpX ` 1q ΛpX q

ΛpY ` 1q ΛpY q

absX

? σpf q

absY

Some solution

‚ Using modules

‚ Using a notion of strength

7/19



Model Substitution of Constructors

Subtitution of Constructors

Given f : X Ñ ΛpY q how to model commutation of constructors

with substitution σpf q : T pX q Ñ T pY q for

ΛpX ` 1q ΛpX q

ΛpY ` 1q ΛpY q

absX

? σpf q

absY

Some solution

‚ Using modules

‚ Using a notion of strength

7/19



The principle of initial semantics

The General Method

1. Define a notion of signatures

2. Build a category of models for signatures:

§ An algebra structure on a presheaf category

§ With a mathematical structure for substitution

§ And a structure expressing commutation of constructors with

substitution

3. Identity a class of signatures that always have an initial model

8/19



Unifying the Different Traditions



Unifying the Different Traditions

Different Traditions to Initial Semantics



Traditions of Untyped Initial Semantics

Some basic papers on the subject:

1999 Altenkirch and Reus, “Monadic Presentations of Lambda Terms Using

Generalized Inductive Types”

1999 Fiore, Plotkin, and Turi, “Abstract Syntax and Variable Binding”

2003 Matthes and Uustalu, “Substitution in non-wellfounded syntax with vari-

able binding”

2007 Hirschowitz and Maggesi, “Modules over Monads and Linearity”

2010 Zsido, “Typed Abstract Syntax”

2010 Hirschowitz and Maggesi, “Modules over monads and initial semantics”

2012 Hirschowitz and Maggesi, “Initial Semantics for Strengthened Signa-

tures”

2015 Ahrens and Matthes, “Heterogeneous Substitution Systems Revisited”

2018 Ahrens et al., “High-Level Signatures and Initial Semantics”

9/19



Traditions of Untyped Initial Semantics

Year Signatures Category Model Initiality Proofs

1999 Algebraic Set Ñ Set Monads No Yes

1999 Algebraic F Ñ Set Monoids + Strength Yes No

2004 Strength C Ñ C Hss / Monads No / No Yes

2007 Algebraic Set Ñ Set Monads + Module Yes No

2010

2010 Algebraic Set Ñ Set Monads + Module Yes Yes

2012 Strength Set Ñ Set Monads + Module Yes No

2015 Strength C Ñ C Hss / Monads Yes / No Yes

2018 Presentable Set Ñ Set Monads + Module Yes Yes

Comparing models of F Ñ Set vs Set Ñ Set

Challenges

‚ Different notions of Signatures, Categories and Models !

‚ Often no initiality or no proofs !

10/19



Traditions of Untyped Initial Semantics

Year Signatures Category Model Initiality Proofs

1999 Algebraic Set Ñ Set Monads No Yes

1999 Algebraic F Ñ Set Monoids + Strength Yes No

2004 Strength C Ñ C Hss / Monads No / No Yes

2007 Algebraic Set Ñ Set Monads + Module Yes No

2010

2010 Algebraic Set Ñ Set Monads + Module Yes Yes

2012 Strength Set Ñ Set Monads + Module Yes No

2015 Strength C Ñ C Hss / Monads Yes / No Yes

2018 Presentable Set Ñ Set Monads + Module Yes Yes

Comparing models of F Ñ Set vs Set Ñ Set

Challenges

‚ Different notions of Signatures, Categories and Models !

‚ Often no initiality or no proofs !

10/19



Traditions of Untyped Initial Semantics

Year Signatures Category Model Initiality Proofs

1999 Algebraic Set Ñ Set Monads No Yes

1999 Algebraic F Ñ Set Monoids + Strength Yes No

2004 Strength C Ñ C Hss / Monads No / No Yes

2007 Algebraic Set Ñ Set Monads + Module Yes No

2010

2010 Algebraic Set Ñ Set Monads + Module Yes Yes

2012 Strength Set Ñ Set Monads + Module Yes No

2015 Strength C Ñ C Hss / Monads Yes / No Yes

2018 Presentable Set Ñ Set Monads + Module Yes Yes

Comparing models of F Ñ Set vs Set Ñ Set

Challenges

‚ Different notions of Signatures, Categories and Models !

‚ Often no initiality or no proofs !

10/19



Unifying the Different Traditions

Different Signatures



Algebraic Signatures

Algebraic Signatures

‚ Elementary signatures are lists of N, rn1, ..., nk s also written as

Θpn1q ˆ ... ˆ Θpnkq

‚ Algebraic Signatures are list / coproduct of elementary signa-

tures.

Examples

‚ app can be seen as r0, 0s or Θ ˆ Θ

‚ abs can be seen as r1s or Θp1q

‚ The lambda calculus is rr0, 0s, r1ss or Θ ˆ Θ ` Θp1q

Typed ?

‚ Those signatures do not raise as such to the typed case

11/19



Algebraic Signatures

Algebraic Signatures

‚ Elementary signatures are lists of N, rn1, ..., nk s also written as

Θpn1q ˆ ... ˆ Θpnkq

‚ Algebraic Signatures are list / coproduct of elementary signa-

tures.

Examples

‚ app can be seen as r0, 0s or Θ ˆ Θ

‚ abs can be seen as r1s or Θp1q

‚ The lambda calculus is rr0, 0s, r1ss or Θ ˆ Θ ` Θp1q

Typed ?

‚ Those signatures do not raise as such to the typed case

11/19



Algebraic Signatures

Algebraic Signatures

‚ Elementary signatures are lists of N, rn1, ..., nk s also written as

Θpn1q ˆ ... ˆ Θpnkq

‚ Algebraic Signatures are list / coproduct of elementary signa-

tures.

Examples

‚ app can be seen as r0, 0s or Θ ˆ Θ

‚ abs can be seen as r1s or Θp1q

‚ The lambda calculus is rr0, 0s, r1ss or Θ ˆ Θ ` Θp1q

Typed ?

‚ Those signatures do not raise as such to the typed case

11/19



Signatures with strength

Signatures with Strength

Signatures with strength are tuples pH, θq such that :

‚ H : rSet,Sets Ñ rSet,Sets

‚ Θ is natural transformation, such that for all A,B : Set Ñ Set

and b : Id ñ B:

θA,b : HpAq ˝ B Ñ HpA ˝ Bq

Examples

‚ Algebraic signatures ”are” signatures with strength

‚ T ÞÑ T ˝ T is a signatures with strength

12/19



Signatures with strength

Signatures with Strength

Signatures with strength are tuples pH, θq such that :

‚ H : rSet,Sets Ñ rSet,Sets

‚ Θ is natural transformation, such that for all A,B : Set Ñ Set

and b : Id ñ B:

θA,b : HpAq ˝ B Ñ HpA ˝ Bq

Examples

‚ Algebraic signatures ”are” signatures with strength

‚ T ÞÑ T ˝ T is a signatures with strength

12/19



Signatures with strength

Signatures with Strength

Signatures with strength are tuples pH, θq such that :

‚ H : rSet,Sets Ñ rSet,Sets

‚ Θ is natural transformation, such that for all A,B : Set Ñ Set

and b : Id ñ B:

θA,b : HpAq ˝ B Ñ HpA ˝ Bq

Examples

‚ Algebraic signatures ”are” signatures with strength

‚ T ÞÑ T ˝ T is a signatures with strength

12/19



Presentable Signatures

Presentable Signatures

‚ Presentable signatures are signatures Σ such that there is an

algebraic signatures Υ and an epimorphism of signatures:

Υ ↠ Σ

Examples

‚ Adding a commutative binary operator

‚ Adding a coherent fixpoint operator

13/19



Presentable Signatures

Presentable Signatures

‚ Presentable signatures are signatures Σ such that there is an

algebraic signatures Υ and an epimorphism of signatures:

Υ ↠ Σ

Examples

‚ Adding a commutative binary operator

‚ Adding a coherent fixpoint operator

13/19



Unifying the Different Traditions

Our Proposition



Building Models

Monoidal Category

Work directly on Monoidal Category:

‚ F Ñ Set, Set Ñ Set, C Ñ C

Connecting Signatures

‚ Define general notion of signatures

‚ Define substitution with strength

‚ Show that signatures with strength are signatures

‚ Show that algebraic signatures are a subclass of signatures with

strength.

14/19



Building Models

Monoidal Category

Work directly on Monoidal Category:

‚ F Ñ Set, Set Ñ Set, C Ñ C

Connecting Signatures

‚ Define general notion of signatures

‚ Define substitution with strength

‚ Show that signatures with strength are signatures

‚ Show that algebraic signatures are a subclass of signatures with

strength.

14/19



Connecting the Frameworks

Building Models

‚ Define monoids

‚ Define modules over monoids

‚ Define models as monoid + module morphism

Connecting Models

‚ Show that Monoid + Stength = Monads + Module

‚ Show that there is an initial hss

‚ We can use the hss to build a model structure

‚ We can prove this model is initial

15/19



Connecting the Frameworks

Building Models

‚ Define monoids

‚ Define modules over monoids

‚ Define models as monoid + module morphism

Connecting Models

‚ Show that Monoid + Stength = Monads + Module

‚ Show that there is an initial hss

‚ We can use the hss to build a model structure

‚ We can prove this model is initial

15/19



Connecting F Ñ Set and Set Ñ Set

Zsido phd

‚ 2010, Zsido, “Typed Abstract Syntax”

Zsido Theorem

‚ For algebraic signatures, we can build the initial model of F Ñ

Set and Set Ñ Set and vice versa

16/19



Connecting F Ñ Set and Set Ñ Set

Zsido phd

‚ 2010, Zsido, “Typed Abstract Syntax”

Zsido Theorem

‚ For algebraic signatures, we can build the initial model of F Ñ

Set and Set Ñ Set and vice versa

16/19



Traditions of Untyped Initial Semantics

Year Signatures Category Model Initiality Proofs

1999 Algebraic Set Ñ Set Monads No Yes

1999 Algebraic F Ñ Set Monoids + Strength Yes No

2004 Strength C Ñ C Hss / Monads No / No Yes

2007 Algebraic Set Ñ Set Monads + Module Yes No

2010

2010 Algebraic Set Ñ Set Monads + Module Yes Yes

2012 Strength Set Ñ Set Monads + Module Yes No

2015 Strength C Ñ C Hss / Monads Yes / No Yes

2018 Presentable Set Ñ Set Monads + Module Yes Yes

Comparing models of F Ñ Set vs Set Ñ Set

17/19



What is left to do ?

Some general goals

‚ Write it down, explain it and making it accessible

‚ Extend Zsido’s phd for signatures with strength

‚ Look at presentable signatures

‚ Look at signatures with equations

‚ Adding reduction rules ?

‚ Simply typed languages ?

18/19



Let’s eat !

19/19


	Introduction to Initial Semantics
	Unifying the Different Traditions

